Abstract:
A process for converting cephalosporin p-nitrobenzyl ester (Formula I) to the corresponding cephalosporin free acid (Formula II) comprising treating the cephalosporin p-nitrobenzyl ester with a metal selected from the group consisting of iron, magnesium, aluminum, and tin, and with hydrochloric acid in a mixture of water and a water-miscible organic solvent. Preferably, the metal is iron in the form of a fine powder, and the reaction is carried out at a temperature in the range of 30.degree.-50.degree. C.
Abstract:
A process for the manufacture of 7-acylamino-3-hydroxycephem-4-carboxylate-1-oxide in E-rotamer form (Formula III), comprises reacting a 7-acylamino-3-exomethylenecepham-4-carboxylate-1-oxide with ozone in an inert organic solvent in the presence of a catalytic amount of an organic or inorganic base at a temperature ranging from about -80.degree. C. to about +20.degree. C. The E-rotamer (wherein the 3-hydroxy group is strongly hydrogen bonded to the carbonyl of the 4-ester group) exhibits different chemical and physical properties from and is more thermodynamically stable than, the Z-rotamer (wherein there is no hydrogen bonding between the 3-hydroxy group and the carbonyl of the 4-ester group).
Abstract:
A process for the manufacture of 7-acylamino-3-hydroxy-cephem-4-carboxylate-1-oxide in E-rotamer form (Formula III), comprises reacting a 7-acylamino-3-exomethylenecepham-4-carboxylate-1-oxide with ozone in an inert organic solvent in the presence of a catalytic amount of an organic or inorganic base at a temperature ranging from about -80.degree. C. to about +20.degree. C. The E-rotamer (wherein the 3-hydroxy group is strongly hydrogen bonded to the carbonyl of the 4-ester group) exhibits different chemical and physical properties from and is more thermodynamically stable than, the Z-rotamer (wherein there is no hydrogen bonding between the 3-hydroxy group and the carbonyl of the 4-ester group).