摘要:
Techniques are disclosed for automating the generation of parallel SIMD native source code in three major functional areas of data transmission, synchronization, and SIMD operations. An annotation standard is defined that is independent from native compilers and, coupled with a source-to-source compiler that provides high-level abstractions of data transmission, synchronization, and SIMD operations, relieves the need for programmers to work in a hardware-specific manner, while addressing issues of productivity and portability in a parallel SIMD computing environment.
摘要:
Techniques are disclosed for generating fast vector masking SIMD code corresponding to source code having a conditional statement, where the SIMD code replaces the conditional statements with vector SIMD operations. One technique includes performing conditional masking using vector operations, bit masking operations, and bitwise logical operations. The need for conditional statements in SIMD code is thereby removed, allowing SIMD hardware to avoid having to use branch prediction. This reduces the number of pipeline stalls and results in increased utilization of the SIMD computational units.
摘要:
Systems, methods and articles of manufacture are disclosed for capturing motion information in a magnetic resonance imaging (MRI) environment. A light sink in the MRI environment may detect light emitted from a plurality of light sources. Each of the plurality of light sources may emit light of a different frequency. Further, each of the plurality of light sources may be located at a different spatial position in the MRI environment. The detected light may be analyzed. A change in spatial position of the light sink may be computed based on the analysis.
摘要:
Systems, methods and articles of manufacture are disclosed for compensating for motion of a subject during an MRI scan of the subject. k-space data may be received from the MRI scan of the subject. A first graphical image may be generated from a first set of data elements from the k-space data. Similarly, a second graphical image may be generated from a second set of data elements from the k-space data. An offset in pixels may be determined by which to translate the second graphical image from the first graphical image to compensate for the motion. The k-space data may be modified at a sub-pixel offset relative to the determined offset. A motion-compensated graphical image of the subject may be generated from the modified k-space data. Doing so reduces the search space evaluated to sharpen images generated from the k-space data.
摘要:
Systems, methods and articles of manufacture are disclosed for compensating for motion of a subject during an MRI scan of the subject. k-space data may be received from the MRI scan of the subject. Motion information may be received for the subject. Based on the received motion information, a translational motion of the subject may be determined between a first point in time and a second point in time. A search space for motion correction may be reduced using the determined change and an error margin of the capturing technique. A motion-compensated, graphical image of the subject may be generated using the reduced search space.
摘要:
Techniques are disclosed for converting data into a format tailored for efficient multidimensional fast Fourier transforms (FFTS) on single instruction, multiple data (SIMD) multi-core processor architectures. The technique includes converting data from a multidimensional array stored in a conventional row-major order into SIMD format. Converted data in SIMD format consists of a sequence of blocks, where each block interleaves s rows such that SIMD vector processors may operate on s rows simultaneously. As a result, the converted data in SIMD format enables smaller-sized 1D FFTs to be optimized in SIMD multi-core processor architectures.
摘要:
A system and/or method automatically identifies one or more vascular regions in a medical image or set of medical images. For example, the system/method may automatically identify vascular structures as belonging to the left carotid, right carotid, and/or basilar vascular regions in the head. The system/method takes as input the medical image(s) and automatically identifies one or more vascular regions. The system/method may also automatically generate MIP renderings of the identified region or regions.
摘要:
Systems, methods and articles of manufacture are disclosed for capturing motion information in a magnetic resonance imaging (MRI) environment. A light sink in the MRI environment may detect light emitted from a plurality of light sources. Each of the plurality of light sources may emit light of a different frequency. Further, each of the plurality of light sources may be located at a different spatial position in the MRI environment. The detected light may be analyzed. A change in spatial position of the light sink may be computed based on the analysis.
摘要:
Techniques are disclosed for converting data into a format tailored for efficient multidimensional fast Fourier transforms (FFTS) on single instruction, multiple data (SIMD) multi-core processor architectures. The technique includes converting data from a multidimensional array stored in a conventional row-major order into SIMD format. Converted data in SIMD format consists of a sequence of blocks, where each block interleaves s rows such that SIMD vector processors may operate on s rows simultaneously. As a result, the converted data in SIMD format enables smaller-sized 1D FFTs to be optimized in SIMD multi-core processor architectures.
摘要:
A technique is disclosed for distributed runtime diagnostics in hierarchical parallel environments. In one embodiment, a user is allowed to configure, during runtime, a processing element on which to perform diagnostics, an algorithm for the processing element to execute, a data set for the algorithm to execute against, a diagnostic function for the processing element to execute, a condition for executing the diagnostic function, and visualization parameters for memory local to the processing element. As a result, runtime diagnostics can be performed with sufficient degree of control and customization to aid debugging in a hierarchical parallel environment.