Abstract:
In one embodiment, a method includes obtaining information relating to a steady state operation of a portion of an electrical network, the electrical network including a plurality of components, the information being obtained from the plurality of components while the portion of the electrical network is operating at steady state, wherein the information is obtained through a communications network that at least partially overlays the electrical network. The method also includes detecting a fault in the electrical network, isolating the location of the fault, and restoring the electrical network. The fault is detected by at least a first component of the plurality of components. Restoring the electrical network includes determining when the first component owns the fault. Determining when the first component owns the fault includes at least processing the information obtained from the plurality of components.
Abstract:
In one embodiment, a system identifies a grid topology of a plurality of distribution automation (DA) devices of a distribution feeder circuit in a power grid, and determines parameters for each of the DA devices of the distribution feeder circuit based on the grid topology e.g., protection parameters such that DA devices further from a power source in the power grid up to a normally open point (NOP) are configured to trigger protection earlier than DA devices closer to the power source. The DA devices may then be configured with respective parameters as determined, and in response to detecting a change of the grid topology, updated parameters may be determined for one or more of the DA devices based on the changed grid topology. The system then reconfigures respective parameters of each of the DA devices that have updated parameters due to the change of the grid topology.
Abstract:
In one embodiment, a method includes obtaining information relating to a steady state operation of a portion of an electrical network, the electrical network including a plurality of components, the information being obtained from the plurality of components while the portion of the electrical network is operating at steady state, wherein the information is obtained through a communications network that at least partially overlays the electrical network. The method also includes detecting a fault in the electrical network, isolating the location of the fault, and restoring the electrical network. The fault is detected by at least a first component of the plurality of components. Restoring the electrical network includes determining when the first component owns the fault. Determining when the first component owns the fault includes at least processing the information obtained from the plurality of components.
Abstract:
In one embodiment, a system identifies a grid topology of a plurality of distribution automation (DA) devices of a distribution feeder circuit in a power grid, and determines parameters for each of the DA devices of the distribution feeder circuit based on the grid topology e.g., protection parameters such that DA devices further from a power source in the power grid up to a normally open point (NOP) are configured to trigger protection earlier than DA devices closer to the power source. The DA devices may then be configured with respective parameters as determined, and in response to detecting a change of the grid topology, updated parameters may be determined for one or more of the DA devices based on the changed grid topology. The system then reconfigures respective parameters of each of the DA devices that have updated parameters due to the change of the grid topology.
Abstract:
In one embodiment, a requesting device (e.g., head-end application) requests a phase-related response from an end-point that does not know its phase in a polyphase power source system. In response, the requesting device receives the phase-related response from the end-point, where the response relays an identification of the end-point and related phase information without indicating an actual phase of the end-point, e.g., on which power-line is a response generated or at which time is a zero-crossing of the power source's waveform. The phase information of the phase-related response may then be correlated to a known phase of a known-phase device, such that the actual phase of the end-point may be identified based on the correlation.
Abstract:
In one embodiment, a requesting device (e.g., head-end application) requests a phase-related response from an end-point that does not know its phase in a polyphase power source system. In response, the requesting device receives the phase-related response from the end-point, where the response relays an identification of the end-point and related phase information without indicating an actual phase of the end-point, e.g., on which power-line is a response generated or at which time is a zero-crossing of the power source's waveform. The phase information of the phase-related response may then be correlated to a known phase of a known-phase device, such that the actual phase of the end-point may be identified based on the correlation.