Abstract:
A control signal protection device protects a current-receiving field device from an undesirable interruption in a control signal provided to the field device. The control signal protection device includes a first terminal to connect the signal protection device to a control system and a second terminal that connects the control signal protection device to a field device. The control signal device further includes a power storing element for temporary accumulation of electric energy and a switching circuit for controlling operational mode of the signal protection device. Electric energy is stored in the power storing element in a first operational mode. Electric energy stored in the power storing element is supplied to a positive terminal in the second terminal pair in a second operational mode.
Abstract:
In a power protection and distribution assembly a trip system monitors electrical current and sends a current status signal to an arc flash protection system indicating whether current characteristic of an arc event is detected. The arc flash protection system evaluates this current status signal along with a light status signal indicating whether light characteristic of an arc event has been detected. Based on this evaluation, the arc flash protection system sends a control signal to the trip system for controlling the trip system to trip a breaker. The systems each include a full-duplex signaling module for sending the signals between the systems over a pair of conductors. Each signaling module sends one of the signals by modulating the magnitude of a current through or a voltage across the conductors, and receives the other signal by demodulating the magnitude of the current through or the voltage across the conductors, as distinctively modulated by the other signaling module.
Abstract:
Aspects of the invention provide for a fault processing system. In one embodiment, the fault processing system includes: a first processing engine wrapper having: an inbound pipe configured to obtain a first claimcheck data packet; a processing engine component configured to: process a first context message derived from the first claimcheck data packet according to a fault rule selected from: a fault detection rule, a fault location rule, a fault isolation rule, or a fault restoration rule; and generate a second context message, the second context message including data processed according to the selected fault rule; and an outbound pipe configured to provide a second claimcheck data packet derived from the second context message.
Abstract:
A method and system for programming and implementing automated fault isolation and restoration of high-speed fault detection of circuits in power distribution networks using sequential logic and peer-to-peer communication is provided. High-speed fault detection of circuits in power distribution networks uses protective relay devices (14) segmenting a distribution line (11) having Intelligent Electronic Devices (IED) (22) associated with switching devices (20) communicating peer-to-peer via a communication system (30) to provide fast and accurate fault location information in distribution systems with sequential logic.
Abstract:
In one embodiment, a method includes obtaining information relating to a steady state operation of a portion of an electrical network, the electrical network including a plurality of components, the information being obtained from the plurality of components while the portion of the electrical network is operating at steady state, wherein the information is obtained through a communications network that at least partially overlays the electrical network. The method also includes detecting a fault in the electrical network, isolating the location of the fault, and restoring the electrical network. The fault is detected by at least a first component of the plurality of components. Restoring the electrical network includes determining when the first component owns the fault. Determining when the first component owns the fault includes at least processing the information obtained from the plurality of components.
Abstract:
In one embodiment, a method includes obtaining information relating to a steady state operation of a portion of an electrical network, the electrical network including a plurality of components, the information being obtained from the plurality of components while the portion of the electrical network is operating at steady state, wherein the information is obtained through a communications network that at least partially overlays the electrical network. The method also includes detecting a fault in the electrical network, isolating the location of the fault, and restoring the electrical network. The fault is detected by at least a first component of the plurality of components. Restoring the electrical network includes determining when the first component owns the fault. Determining when the first component owns the fault includes at least processing the information obtained from the plurality of components.
Abstract:
Received power line trip signals are delayed in their tripping function by a circuit which causes introduction of the delay in response to a wideband received signal rising rapidly above a dynamic amplitude level, or in response to a narrowband received signal going outside upper and lower amplitude limits. Either condition could indicate a false trip signal, so that a delay before actual tripping is desirable.
Abstract:
The present disclosure pertains to systems and methods for supervising protective elements in electric power systems. In one embodiment, a system may be configured to selectively enable a protective action an electric power system. The system may include a data acquisition subsystem receive a plurality of representations of electrical conditions associated with at least a portion of the electric power delivery system. An incremental quantities module may calculate incremental quantities from the plurality of representations. A protective module may be configured to detect an event, to determine an incremental quantities value during the event, and to determine a time-varying threshold. The incremental quantities value during the event may be compared with the time-varying threshold, and a protective action module may be enabled to implement a protective action when the value of the incremental quantities value during the event exceeds the time-varying threshold.
Abstract:
A control signal protection device protects a current-receiving field device from an undesirable interruption in a control signal provided to the field device. The control signal protection device includes a first terminal to connect the signal protection device to a control system and a second terminal that connects the control signal protection device to a field device. The control signal device further includes a power storing element for temporary accumulation of electric energy and a switching circuit for controlling operational mode of the signal protection device. Electric energy is stored in the power storing element in a first operational mode. Electric energy stored in the power storing element is supplied to a positive terminal in the second terminal pair in a second operational mode.