摘要:
A method for synthesizing carbon nanocoils with high efficiency, by determining the structure of carbon nuclei that have been attached to the ends of carbon nanocoils and thus specifying a true catalyst for synthesizing carbon nanocoils is implemented. The catalyst for synthesizing carbon nanocoils according to the present invention is a carbide catalyst that contains at least elements (a transition metal element, In, C) or (a transition metal element, Sn, C), and in particular, it is preferable for the transition metal element to be Fe, Co or Ni. In addition to this carbide catalyst, a metal catalyst of (Fe, Al, Sn) and (Fe, Cr, Sn) are effective. From among these, catalysts such as Fe3InC0.5, Fe3InC0.5Snw and Fe3SnC are particularly preferable. The wire diameter and the coil diameter can be controlled by using a catalyst where any of these catalysts is carried by a porous carrier.
摘要:
Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity.A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously. Consequently, the initial growth of carbon nanostructure is positively carried out, and the height growth and thickness growth thereof can be effected in high efficiency. Further, high-density growth and short-time high-speed growth can be realized. The catalyst includes any forms of catalyst such as catalyst substrate, catalyst structure, catalyst powders and catalyst pellet. It is especially preferred to employ a system wherein the feed and interruption of the raw material gas G are intermittently controlled by means of an electromagnetic three-way valve 24.
摘要:
It is the purpose of this invention to present a process for producing carbon nanostructure in which the mechanism of continuous carbon nanostructure growth can be optimized and a high-quality carbon nanostructure can be produced, a catalyst for carbon nanostructure growth which is for use in the production, a raw-material gas and a carrier gas for producing the same, and an apparatus for producing the same. The process for carbon nanostructure production, in which the length of the nanostructure can be continuously controlled comprises feeding a carrier gas and a raw-material gas to a reaction chamber (4) to produce a carbon nanostructure (2) with a catalytic structure (6), wherein the concentrations of oxidation gases contained in the carrier gas and raw-material gas, such as oxygen and water (in the case of raw-material acetylene gas, minor ingredients such as DMF and acetone, which are solvents), are regulated to a moderate value. Thus, a carbon nanostructure of good quality can be produced at a high efficiency.
摘要:
A method for synthesizing carbon nanocoils with high efficiency, by determining the structure of carbon nuclei that have been attached to the ends of carbon nanocoils and thus specifying a true catalyst for synthesizing carbon nanocoils is implemented. The catalyst for synthesizing carbon nanocoils according to the present invention is a carbide catalyst that contains at least elements (a transition metal element, In, C) or (a transition metal element, Sn, C), and in particular, it is preferable for the transition metal element to be Fe, Co or Ni. In addition to this carbide catalyst, a metal catalyst of (Fe, Al, Sn) and (Fe, Cr, Sn) are effective. From among these, catalysts such as Fe3InC0.5, Fe3InC0.5Snw and Fe3SnC are particularly preferable. The wire diameter and the coil diameter can be controlled by using a catalyst where any of these catalysts is carried by a porous carrier.
摘要翻译:通过确定已经附着在碳纳米线的末端上的碳原子核的结构,从而确定了用于合成碳纳米线的真正的催化剂,实现了高效合成碳纳米线的方法。 根据本发明的用于合成碳纳米薄膜的催化剂是至少含有元素(过渡金属元素,In,C)或(过渡金属元素Sn,C)的碳化物催化剂,特别地,优选 过渡金属元素为Fe,Co或Ni。 除了这种碳化物催化剂之外,(Fe,Al,Sn)和(Fe,Cr,Sn)的金属催化剂是有效的。 其中,诸如Fe 3 N 3 C 5 N 3,Fe 3 InCl 0.5 Snw和Fe 3 O 3的催化剂, 3 SnC是特别优选的。 线径和线圈直径可以通过使用其中任何这些催化剂由多孔载体承载的催化剂来控制。
摘要:
An aggregate of carbon-based fine structures in which a plurality of carbon-based fine structures are collected, wherein respective carbon-based fine structures are oriented in the same direction. The above aggregate of carbon-based fine structures is an aggregate of a plurality of carbon-based fine structures in a state they are pulled by one another with strong interaction, and has such a length that allows the improvement of the handeability and workability thereof.
摘要:
An aggregate of carbon-based fine structures in which a plurality of carbon-based fine structures are collected, wherein respective carbon-based fine structures are oriented in the same direction. The above aggregate of carbon-based fine structures is an aggregate of a plurality of carbon-based fine structures in a state they are pulled by one another with strong interaction, and has such a length that allows the improvement of the handleability and workability thereof.
摘要:
Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity. A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously. Consequently, the initial growth of carbon nanostructure is positively carried out, and the height growth and thickness growth thereof can be effected in high efficiency. Further, high-density growth and short-time high-speed growth can be realized. The catalyst includes any forms of catalyst such as catalyst substrate, catalyst structure, catalyst powders and catalyst pellet. It is especially preferred to employ a system wherein the feed and interruption of the raw material gas G are intermittently controlled by means of an electromagnetic three-way valve 24.
摘要:
Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity.-A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously. Consequently, the initial growth of carbon nanostructure is positively carried out, and the height growth and thickness growth thereof can be effected in high efficiency. Further, high-density growth and short-time high-speed growth can be realized. The catalyst includes any forms of catalyst such as catalyst substrate, catalyst structure, catalyst powders and catalyst pellet. It is especially preferred to employ a system wherein the feed and interruption of the raw material gas G are intermittently controlled by means of an electromagnetic three-way valve 24.
摘要:
Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity.A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously. Consequently, the initial growth of carbon nanostructure is positively carried out, and the height growth and thickness growth thereof can be effected in high efficiency. Further, high-density growth and short-time high-speed growth can be realized. The catalyst includes any forms of catalyst such as catalyst substrate, catalyst structure, catalyst powders and catalyst pellet. It is especially preferred to employ a system wherein the feed and interruption of the raw material gas G are intermittently controlled by means of an electromagnetic three-way valve 24.
摘要:
An aggregate of carbon-based fine structures in which a plurality of carbon-based fine structures are collected, wherein respective carbon-based fine structures are oriented in the same direction. The above aggregate of carbon-based fine structures is an aggregate of a plurality of carbon-based fine structures in a state they are pulled by one another with strong interaction, and has such a length that allows the improvement of the handleability and workability thereof.