摘要:
Optical elements and backlight modules employing the same are provided. The optical element can be a brightness enhancement diffusion complex film, comprising a cholesteric liquid crystal film and a transparent optical film directly disposed on the cholesteric liquid crystal film. Particularly, the whole transparent optical film directly contacts to the cholesteric liquid crystal film, in the absence of an intermediate located between the transparent optical film and the cholesteric liquid crystal film.
摘要:
To form a brightness enhancement film of cholesteric liquid crystal, a photopolymerizable liquid crystal is first formed on a first substrate. A second substrate then is formed on the liquid crystal substance to form a sandwich structure. The sandwich structure is subsequently submitted to a lamination process that generates shear stress thereon. Finally, an energetic irradiation including UV irradiation is performed to solidify the layer of liquid crystal into a liquid crystal polymer film. The second substrate then is selectively removed. The above steps are repeated until a desired reflected wavelength range of the liquid crystal film is obtained.
摘要:
A positive photoresist composition is disclosed which comprises a photosensitive compound, a phenolic resin, and an organic solvent. The phenolic resin is prepared from a monomeric composition comprises formaldehyde and a mixture of phenol monomers. The mixture of phenol monomers comprises: (a) no more than 98 mole percent of a mixture of monohydroxy phenols, the mixture of monohydroxy phenols comprises: (I) about 50.about.80 mole percent of meta-methylphenol; (ii) about 10.about.30 mole percent of 2,5-dimethylphenol; and (iii) about 10.about.40 mole percent of 2,3,5-trimethylphenol; and (b) at least 2 mol percent of at least one polyhydroxybenzene which is presented by the following formula: ##STR1## wherein n is an integer of 1 or 2. Preferably, the polyhydroxybenzene is a mixture of trihydroxybenzene and dihydroxybenzene in a molar ratio of about 40 to 60. The photoresist composition can be developed using a weak basic solution which causes images of sharp contrast to be developed; it can also be advantageously used in making color filters for use in color liquid crystal displays in a multiple development process in conjunction with an electrodeposition lithography.
摘要:
A method for making color filters containing a color matrix with at least three desired colored layers comprising the steps of: (a) forming a positive energy-accumulable photoresist layer on a transparent electrically conductive substrate; (b) pre-conditioning the energy-accumulable photoresist layer to form at least three regions of different initial levels of exposure energy, from a highest to a lowest; (c) using a developer solution to develop and remove the region of the photoresist layer with the highest level of initial exposure energy to thereby cause a corresponding area of the electrically conductive substrate underlying the photoresist to be uncovered; (d) electrodepositing a photo-curable resin of a desired color and a predetermined exposure energy required for curing onto the uncovered area of the substrate; (e) overall-exposing the photoresist layer to a light source so as to impart an incremental exposure energy to all regions of the photoresist layer; (f) using a developer solution to develop and remove the region of the photoresist layer which has accumulatively attained the full exposure energy in step (e) and uncover a corresponding area on the substrate; (g) electrodepositing a photo-curable resin of another desired color onto the uncovered area of the substrate formed in step (f); and (h) repeating steps (e) through (g) until all the desired colored layers are selectively developed on the substrate. The incremental exposure energy is provided in step (e) such that: (i) it enables a region with a next highest initial exposure energy to attain full exposure energy, and (ii) it equals to or exceeds the exposure energy required for curing the photo-curable resin to thereby, at the same time, cause the photo-curable resin to become hardened.
摘要:
A display material and method and device thereof are provided. The display material is first formed by evenly mixing appropriate weight ratios of DFLCs, incurable nanoparticles, curable nanoparticles, and a photoinitiator. Next, the evenly mixed mixture is disposed between two parallel conducting transparent substrates, wherein an electrical field is conducted thereto and the DFLCs therein aligned to the direction of the applied electrical field. Concurrently, under the applied electrical field, some curable nanoparticles within the evenly mixed mixture, form short nano chains, initiating the photo initiator. The frame structure of short nano chains stabilize both the clear and scattering states, thereby the bistable characteristic was improved and the contrast ratio was enhanced as applied to bistable displays.
摘要:
A high transmittance brightness enhanced optical element for backlight modules and liquid crystal display device is disclosed. The brightness enhanced polarizing optical element comprises a reflective polarizer film, a phase retardation film, and a polarization enhancement film. The reflective polarizer film provides a function of selectively reflecting right-handness circularly polarized light or left-handness circularly polarized light and will transmit the other one of them. The one was selectively reflected will be recombined with the light source or the backlight and re-direct toward the reflective polarizer. The portions of the reflective light will be recombined with the fresh light from the light source as above and the processes repeatedly. As a result, almost all of the light transmit the reflective polarizer and in the same circular polarization. The light is then transmitted the phase retardation film and converted to a polarized light with another optical axis.
摘要:
A high transmittance brightness enhanced optical element for backlight modules and liquid crystal display device is disclosed. The brightness enhanced polarizing optical element comprises a reflective polarizer film, a phase retardation film, and a polarization enhancement film. The reflective polarizer film provides a function of selectively reflecting right-handness circularly polarized light or left-handness circularly polarized light and will transmit the other one of them. The one was selectively reflected will be recombined with the light source or the backlight and re-direct toward the reflective polarizer. The portions of the reflective light will be recombined with the fresh light from the light source as above and the processes repeatedly. As a result, almost all of the light transmit the reflective polarizer and in the same circular polarization. The light is then transmitted the phase retardation film and converted to a polarized light with another optical axis.
摘要:
A reflective-type diffraction grating structure for use in color display devices such as liquid crystal displays (LCDs). It contains: (1) a plurality of micro-lenses each having a smooth top surface and a blazed zig-zag-shaped grating surface at the bottom; (2) an optical coating formed below the zig-zag-shaped grating surface; and (3) a reflective member formed below the optical coating. With the cooperative actions of the zig-zag-shaped grating surface, the optical coating layer, and the reflective member, an incident light, when reflected, is separated into repeated sequences of red, green, and blue color components and a black matrix segregating the red, green, and blue color components. A sequence of micro-light valves are placed in the path of the reflected incident light to block the undesired color components. The reflective-type diffraction grating structure dispenses with the need for the various layers of color filters. As a result, it improves the brightness of the image and reduces power consumption, as well as reducing the manufacturing cost.
摘要:
A liquid crystal device includes a pair of substrates with anchoring energy. A cell gap is formed between the pair of substrates. Polymer dispersed liquid crystals are arranged in the cell gap.
摘要:
A method for making broadband cholesteric liquid crystals with improved bandwidth. The method includes the main steps of: (a) preparing a polymerization mixture containing first and second chiral liquid crystals, wherein the first chiral liquid crystal possesses a cholesteric liquid crystal phase and the second chiral liquid crystal possesses a helix-inversion characteristic, and at least one of the first or second chiral liquid crystals contains a polymerizable functional group; and (b) subjecting the polymerization mixture to a polymerization reaction, wherein the polymerization reaction is conducted such that the first chiral liquid crystal will go through a helix-inversion phenomenon. In a preferred embodiment, the second chiral liquid crystal has a temperature-dependent helicity which exhibits a helix inversion characteristic at a helix inversion temperature.