Abstract:
An audio decoder has an arithmetic decoder for providing decoded spectral values on the basis of an arithmetically-encoded representation and a frequency-domain-to-time-domain converter for providing a time-domain audio representation. The arithmetic decoder selects a mapping rule describing a mapping of a code value onto a symbol code in dependence on a context state described by a numeric current context value which is determined in dependence on previously decoded spectral values. The arithmetic decoder obtains a plurality of context subregion values on the basis of previously decoded spectral values and derives a numeric current context value associated with one or more spectral values to be decoded in dependence on stored context subregion values. The arithmetic decoder computes the norm of a vector formed by a plurality of previously decoded spectral values in order to obtain a common context subregion value. An audio encoder uses a similar concept.
Abstract:
An audio decoder includes an arithmetic decoder for providing a plurality of decoded spectral values on the basis of an arithmetically encoded representation of the spectral values, and a frequency-domain-to-time-domain converter for providing a time-domain audio representation using the decoded spectral values. The arithmetic decoder selects a mapping rule describing a mapping of a code value onto a symbol code in dependence on a context state described by a numeric current context value. The arithmetic decoder determines the numeric current context value in dependence on a plurality of previously decoded spectral values. The arithmetic decoder evaluates a hash table, entries of which define both significant state values and boundaries of intervals of numeric context values, in order to select the mapping rule. A mapping rule index value is individually associated to a numeric context value being a significant state value.
Abstract:
An audio decoder for providing a decoded audio information includes an arithmetic decoder for providing a plurality of decoded spectral values on the basis of an arithmetically-encoded representation of the spectral values and a frequency-domain-to-time-domain converter for providing a time-domain audio representation using decoded spectral values. The arithmetic decoder is configured to select a mapping rule describing a mapping of a code value onto a symbol code in dependence on a context state. The arithmetic decoder is configured to determine a numeric current context value describing the current context state in dependence on a plurality of previously decoded spectral values and also in dependence on whether a spectral value to be decoded is in a first predetermined frequency region or in a second predetermined frequency region. An audio encoder provides an encoded audio information on the basis of an input audio information.
Abstract:
An audio decoder for providing a decoded audio information includes a arithmetic decoder for providing a plurality of decoded spectral values on the basis of an arithmetically-encoded representation of the spectral values and a frequency-domain-to-time-domain converter for providing a time-domain audio representation using the decoded spectral values. The arithmetic decoder is configured to select a mapping rule describing a mapping of a code value onto a symbol code in dependence on a context state. The arithmetic decoder is configured to determine or modify the current context state in dependence on a plurality of previously-decoded spectral values. The arithmetic decoder is configured to detect a group of a plurality of previously-decoded spectral values, which fulfill, individually or taken together, a predetermined condition regarding their magnitudes, and to determine the current context state in dependence on a result of the detection.An audio encoder uses similar principles.
Abstract:
An audio decoder for providing a decoded audio information includes an arithmetic decoder for providing a plurality of decoded spectral values on the basis of an arithmetically-encoded representation of the spectral values and a frequency-domain-to-time-domain converter for providing a time-domain audio representation using decoded spectral values. The arithmetic decoder is configured to select a mapping rule describing a mapping of a code value onto a symbol code in dependence on a context state. The arithmetic decoder is configured to determine a numeric current context value describing the current context state in dependence on a plurality of previously decoded spectral values and also in dependence on whether a spectral value to be decoded is in a first predetermined frequency region or in a second predetermined frequency region.An audio encoder provides an encoded audio information on the basis of an input audio information.
Abstract:
An audio decoder includes an arithmetic decoder for providing decoded spectral values on the basis of an arithmetically-encoded representation of the spectral values and a frequency-domain-to-time-domain converter for providing a time-domain audio representation using the decoded spectral values. The arithmetic decoder selects a mapping rule describing a mapping of a code value onto a symbol code in dependence on a context state described by a numeric current context value, and determines the numeric current context value in dependence on a plurality of previously-decoded spectral values. The arithmetic decoder modifies a number representation of a numeric previous context value, describing a context state associated with one or more previously decoded spectral values, in dependence on a context subregion value, to acquire a number representation of a numeric current context value describing a context state associated with one or more spectral values to be decoded. An audio encoder uses a similar concept.
Abstract:
An audio decoder has an arithmetic decoder for providing decoded spectral values on the basis of an arithmetically-encoded representation and a frequency-domain-to-time-domain converter for providing a time-domain audio representation. The arithmetic decoder selects a mapping rule describing a mapping of a code value onto a symbol code in dependence on a context state described by a numeric current context value which is determined in dependence on previously decoded spectral values. The arithmetic decoder obtains a plurality of context subregion values on the basis of previously decoded spectral values and derives a numeric current context value associated with one or more spectral values to be decoded in dependence on stored context subregion values. The arithmetic decoder computes the norm of a vector formed by a plurality of previously decoded spectral values in order to obtain a common context subregion value. An audio encoder uses a similar concept.
Abstract:
A bandwidth extension encoder for encoding an audio signal has a signal analyzer, a core encoder and a parameter calculator. The audio signal has a low frequency signal having a core frequency band and a high frequency signal having an upper frequency band. The signal analyzer is configured for analyzing the audio signal, the audio signal having a block of audio samples, the block having a specified length in time. The signal analyzer is furthermore configured for determining from a plurality of analysis windows an analysis window to be used for performing a bandwidth extension in a bandwidth extension decoder. The core encoder is configured for encoding the low frequency signal to acquire an encoded or frequency signal. The parameter calculator is configured for calculating bandwidth extension parameters from the high frequency signal.
Abstract:
An audio decoder has an arithmetic decoder for providing decoded spectral values on the basis of an arithmetically-encoded representation and a frequency-domain-to-time-domain converter for providing a time-domain audio representation. The arithmetic decoder selects a mapping rule describing a mapping of a code value onto a symbol code in dependence on a numeric current context value describing a current context state. The arithmetic decoder determines the numeric current context value in dependence on a plurality of previously decoded spectral values. The arithmetic decoder evaluates at least one table using an iterative interval size reduction to determine whether the numeric current context value is identical to a table context value described by an entry of the table or lies within an interval described by entries of the table, and derives a mapping rule index value describing a selected mapping table.An audio encoder also uses an iterative interval table size reduction.
Abstract:
A bandwidth extension encoder for encoding an audio signal has a signal analyzer, a core encoder, a parameter calculator, and a window controller. The audio signal has a low frequency signal having a core frequency band and a high frequency signal having an upper frequency band. The signal analyzer is configured for analyzing the audio signal, the audio signal having a block of audio samples, the block having a specified length in time. The signal analyzer is furthermore configured for determining from a plurality of analysis windows an analysis window to be used for performing a bandwidth extension in a bandwidth extension decoder. The core encoder is configured for encoding the low frequency signal to acquire an encoded or frequency signal. The parameter calculator is configured for calculating bandwidth extension parameters from the high frequency signal. The window controller is configured to provide control information indicating analysis window functions.