Abstract:
A method and apparatus for determining potential shifts between electronic modules in a wire bus network or for determining the correspondence quality of their communications operating levels in the network interconnection. The bus medium comprises at least one wire bus which is directly electrically connected to the electronic modules. An offset voltage is added in at least one bus subscriber (test subscriber) on the transmission side to at least one of two dominant, normal source levels and a test message is transmitted into the bus network by the test subscriber which is in this dominant state onto the bus network. This results in a modification of the source level in a predetermined manner. Depending on whether at least one of the two dominant source levels is decreased or increased by the adjustable offset voltage, an evaluation of whether the (reference-earth) potential-defective bus subscriber loses or gains its reception capability is performed. For implementation of the method, an apparatus comprising co-operative potential control devices which are connected or can be connected to the transceiver function of a bus subscriber is used. Together with these, at least with regard to part of the transmitting and/or receiving device of the transceiver function, the apparatus forms at least one controllable voltage source which allows the modification of at least one source level that is dominant during transmission and/or at least one signal level that is discriminant during reception.
Abstract:
A device for bus-networked operation of an electronic unit having microcontroller has a semiconductor circuit which is supplied from a superordinate potential, and is connected between a bus protocol module of the microcontroller and the cores of a two core bus. The semiconductor circuit, which has at least two operating modes, "transmission and reception" (NORMAL) and "sleep" (SLEEP), compromises: a receiving circuit connected to the two bus cores, whose output communicates with a reception input of the bus protocol; a transmitting circuit coupled to receive the transmission output of the bus protocol function; a wake-up identification circuit connected to the cores of the two core bus, and having a wake-up input and switching means for providing, at a control output, a switch-on signal after identification of a wake-up signal from the wake-up input or from the bus, and for emitting a switch-off signal in the SLEEP mode. A voltage regulator, supplied from superordinate potential, provides a regulated output voltage to the microcontroller and to the bus protocol module. The voltage regulator has a control input which communicates with the control output of the semiconductor circuit, and is configured to switch on in the presence of the switch-on signal and to switch off in the presence of the switch-off signal,
Abstract:
The invention relates to an electronic control unit for a motor vehicle with a plurality of data networks and an electronic immobilizer. The control unit according to the invention is configured both as a vehicle-end control section for the electronic immobilizer and as a gateway between at least two of the data networks. At least one component of the gateway also serves as a component of the vehicle-end control section for the electronic immobilizer. Preferably, there is common use of components of the gateway for the immobilizer function such that, in addition to the normal vehicle-end immobilizer control section, a further, redundant vehicle-end immobilizer control section, is formed, which significantly reduces the failure rate of the immobilizer.
Abstract:
The present invention discloses a device and a method for the redundant voltage supply of safety-relevant systems, in particular in motor vehicles. Both a failure of a voltage supply to safety-relevant systems is detected and a switchover to another voltage supply is initiated in response to this, and it is also ensured that even if one or two drive devices for switching over the voltage fail, a fallback level is available which then switches over the voltage. This ensures, both if a voltage supply to safety-relevant systems fails and if drive devices fail, that voltage is nevertheless switched over and in this way the availability of safety-relevant systems is considerably improved.
Abstract:
A semiconductor circuit for an electronic unit having at least one microcontroller comprises at least one voltage regulator for providing, from a first supply voltage, at least one second supply voltage for the microcontroller and for circuits of the unit which cooperate with the microcontroller. The circuit further comprises, in monolithic form, a transceiver unit having transmitting and receiving device for coupling a microcontroller to the two-wire bus. This monolithic construction may additionally comprise watchdog functions, various wake-up functions and an interface via which a serial data exchange with the at least one microcontroller is possible. Furthermore, it may have an apparatus for determining, throughout the network, bus subscribers having reference-ground potential faults and for quantifying such faults.
Abstract:
An integrated semiconductor circuit for an electronic control unit has a microcontroller with a bus protocol function for communicating with other microcontrolled control units via a Controller Area Network (CAN) by way of a two-wire bus. The invention includes a bus-fault-tolerant transceive function which permits communication even when a bus fault is present. A bus fault recognition and response device disconnects the bus from its normal connections and alters its termination characteristics when a fault is detected.