Abstract:
An improved gas separation PSA process, more particularly for oxygen production, utilizing adsorbents of Type X characterized by high frequency (i.e., cycle times of less than 4 s), bed length to square of mean particle diameter ratio within 200 to 600 mm−1, bed size factor of less than 50 lb/TPDO. The bed length, mean particle size, and cycle time are selected in a range such that axial dispersion becomes an important factor. In this way, low product recovery and high pressure drop (high power consumption) disadvantages often associated with the use of small particles are overcome.
Abstract:
An improved gas separation PSA process, more particularly for oxygen production, utilizing adsorbents of Type X characterized by high frequency (i.e., cycle times of less than 4 s), bed length to square of mean particle diameter ratio within 200 to 600 mm−1, bed size factor of less than 50 lb/TPDO. The bed length, mean particle size, and cycle time are selected in a range such that axial dispersion becomes an important factor. In this way, low product recovery and high pressure drop (high power consumption) disadvantages often associated with the use of small particles are overcome.
Abstract:
A process for carrying out cryogenic air separation wherein liquid oxygen is pressurized and vaporized against condensing feed air to produce oxygen gas product wherein excess plant refrigeration is generated such that the aggregate warm end temperature difference of the process exceeds the minimum internal temperature difference of the primary heat exchanger by at least 2K.
Abstract:
An improved gas separation PSA process, more particularly for oxygen production, utilizing adsorbents of Type X characterized by high frequency (i.e., cycle times of less than 4 s), bed length to square of mean particle diameter ratio within 200 to 600 mm−1, bed size factor of less than 50 lb/TPDO. The bed length, mean particle size, and cycle time are selected in a range such that axial dispersion becomes an important factor. In this way, low product recovery and high pressure drop (high power consumption) disadvantages often associated with the use of small particles are overcome.
Abstract:
A cryogenic air separation system for producing elevated pressure nitrogen wherein a portion of the nitrogen product fed to the product compressor downstream of the primary heat exchanger is withdrawn as refrigerant nitrogen from the product compressor, preferably from an intermediate point of the product compressor, and turboexpanded to generate refrigeration for the system.
Abstract:
An improved gas separation PSA process, more particularly for oxygen production, utilizing adsorbents of Type X characterized by high frequency (i.e., cycle times of less than 4 s), bed length to square of mean particle diameter ratio within 200 to 600 mm−1, bed size factor of less than 50 lb/TPDO. The bed length, mean particle size, and cycle time are selected in a range such that axial dispersion becomes an important factor. In this way, low product recovery and high pressure drop (high power consumption) disadvantages often associated with the use of small particles are overcome.
Abstract:
A process for carrying out cryogenic air separation wherein liquid oxygen is pressurized and vaporized against condensing feed air to produce oxygen gas product wherein excess plant refrigeration is generated such that the aggregate warm end temperature difference of the process exceeds the minimum internal temperature difference of the primary heat exchanger by at least 2 K.
Abstract translation:一种用于进行低温空气分离的方法,其中液氧被加压和蒸发以冷凝进料空气以产生氧气产物,其中产生过量的工厂制冷,使得该方法的总体温度结束温度差超过主要温度差的最小内部温度差 热交换器至少2 K.