Abstract:
The present invention relates to a method for production of H2 from natural gas, solid fossil fuels or biomass. The method comprises the following steps: reacting natural gas in a reformer or reacting solid fossil fuels or biomass in a gasifier to form syngas, reacting the syngas to form a shifted gas mixture, comprising H2 and CO2, in a water-gas-shift (WGS) section, separating the shifted gas mixture into a H2 gas and a H2 depleted tail gas mixture or retentate gas mixture in a H2 separation unit, separating the H2-depleted tail gas mixture or retentate gas mixture into a CO2 liquid and a CO2-depleted tail gas mixture in a CO2 capture and liquefaction unit, and recycling the CO2-depleted tail gas mixture from the CO2 capture and liquefaction unit without recompression to the WGS section and to the reformer or the gasifier. The CO2-depleted tail gas mixture is at a pressure in the range from 25 to 120 bar when recycled to the WGS section and to the reformer or the gasifier.
Abstract:
Hydrogen purification devices and their components are disclosed. In some embodiments, the devices may include at least one foil-microscreen assembly disposed between and secured to first and second end frames. The at least one foil-microscreen assembly may include at least one hydrogen-selective membrane and at least one microscreen structure including a non-porous planar sheet having a plurality of apertures forming a plurality of fluid passages. The planar sheet may include generally opposed planar surfaces configured to provide support to the permeate side. The plurality of fluid passages may extend between the opposed surfaces. The at least one hydrogen-selective membrane may be metallurgically bonded to the at least one microscreen structure. In some embodiments, the devices may include a permeate frame having at least one membrane support structure that spans at least a substantial portion of an open region and that is configured to support at least one foil-microscreen assembly.
Abstract:
In order to provide a hydrogen purification device in which a source gas is supplied, from which a purified gas flows out, that is easily manufacturable, and in which the pressure resistance of an hydrogen permeable membrane is high, the hydrogen purification device is configured to include a hydrogen permeable membrane allowing hydrogen to selectively permeate therethrough, two porous supports that sandwich and support the hydrogen permeable membrane from both surfaces thereof, and a casing having a space formed therein configured to accommodate reaction of the source gas and the hydrogen permeable membrane. The porous supports are contained inside the casing, an outermost edge of the hydrogen permeable membrane extends outward from the outer edges of the porous supports in at least one location, and a peripheral portion of the hydrogen permeable membrane in a vicinity of the outermost edge and the casing are airtightly sealed to each other.
Abstract:
The present invention is to provide a means for easily replacing palladium alloy capillaries in a hydrogen purification device formed by using hydrogen separation membrane formed from the palladium alloy capillaries. The hydrogen purification device can be easily disassembled into a palladium alloy membrane unit and a storage structure thereof. A palladium alloy membrane unit is provided with a plurality of palladium alloy capillaries, a disk-shaped tube sheet supporting the palladium alloy capillaries, a pure hydrogen discharge pipe having a cylinder being in close contact with a periphery of the tube sheet at one end, a joint connecting with a pure hydrogen outlet of the storage structure at the other end, and preferably a joint being in close contact with an opening of a container of the storage structure at a position between the cylinder and the outlet joint. The storage structure is provided with a container storing the palladium alloy membrane unit, a heater, a raw material hydrogen inlet, an impurity-containing gas outlet, and a pure hydrogen outlet, a member provided on the pure hydrogen outlet, the member connecting with a joint provided at one end of the palladium alloy membrane unit, and preferably a member provided on the opening of the container, the member being in close contact with a joint provided on the cylinder of the palladium alloy membrane unit.
Abstract:
A method for synthesizing ammonia for agricultural fertilizers employs water (H2O) as the source of hydrogen (H2) in ammonia (NH3) synthesis, and gathers carbon monoxide (CO) as a limiting reagent for combining in a WGS (Water-Gas-Shift) reaction for producing hydrogen. The WGS reaction employs CO with the water to produce Carbon Dioxide (CO2) and H2, consuming undesirable CO from other industrial applications. A by-product of the process includes generating 1.5 mole of CO2 for each mole of ammonia synthesized. An intermediate step consumes 3 moles of hydrogen for each mole of Nitrogen (N2). The use of methane gas is avoided as the process employs CO and the WGS reaction as an exclusive source of H2 without introducing methane (CH4). A downstream synthesis of ammonia can be done through a fuel cell to produce electricity for the ammonia synthesis for further sustainability.
Abstract:
The present invention is to provide a method for refining hydrogen with a hydrogen refining device in which the inside of a cell is divided into a primary side space and a secondary side space by palladium alloy capillaries each having one end being closed and a tube sheet supporting the open end of the palladium alloy capillaries, in which impurity-containing hydrogen is introduced from the primary side space to allow hydrogen to permeate the palladium alloy capillaries so as to collect pure hydrogen from the secondary side space. The method for refining hydrogen has a capability of decreasing the removed amount of gas containing impurities and efficiently collecting pure hydrogen from the secondary side space. From hydrogen with 1000 ppm or less of impurities as raw material hydrogen, gas containing impurities that does not penetrate the palladium alloy capillaries is removed from the primary side space at the flow rate of 10% or less of the introduction flow rate of the raw material hydrogen. Furthermore, gas containing impurities that does not penetrate the palladium alloy capillaries is removed from the primary side space at a flow rate based on the content of impurities contained in raw material hydrogen.
Abstract:
The present invention provides composite membranes consisting of palladium and palladium alloys with a phosphorus component. The membranes may be used in a tubular geometry on an alumina support. In other embodiments, the membranes may be prepared by treating the metal precursor with a phosphorus source such as phosphine.
Abstract:
Partial oxidation/steam reformers (222) which use heat integrated steam cycles and steam to carbon ratios of at least about 4:1 to enable efficient operation at high pressures suitable for hydrogen purification unit operation such as membrane separation (234) and pressure swing adsorption.
Abstract:
A process of producing transition metal-based membranes or other layers on a porous support is provided. The layers are suitable for hydrogen separation, oxygen separation, or protective or decorative purpose sand are produced by pretreating the porous support by coating with a solution of a transition metal salt, drying the seeded support, reducing the transition metal salt to transition metal metal, and electroless plating with a complex of a transition metal (palladium, silver or other) and optionally other metals. The membranes can be tubular with a transition metal layer of 1-10 μm on its outside.
Abstract:
The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry