摘要:
The disclosure relates to a signal processing method for multi aperture sun sensor comprising the following steps: reading the information of sunspots in a row from a centroid coordinate memory, judging the absence of sunspots in that row, identifying the row and column index of the sunspots in the complete row, selecting the corresponding calibration parameter based on the row and column index, calculating attitude with the attitude calculation module the corresponding to identified sunspots, averaging the accumulated attitude of all sunspots and outputting the final attitude. At the same time, a signal processing device for multi aperture sun sensor is also presented. It is comprised of a sunspot absence judgment and an identification module and an attitude calculation module. The disclosure implements the integration of sun sensors without additional image processor or attitude processor, reduces field programmable gate array resource and improves the reliability of sun sensors.
摘要:
A method for calibration of a digital celestial sensor is disclosed. The method comprises the following steps: firstly, an integrated mathematic model for imaging of a celestial sensor is established according to external and internal parameters of the calibration system of the celestial sensor. Secondly, by rotating two axes of a rotator by different angles, calibration points data are acquired and sent to a processing computer through an interface circuit. Finally, a two-step calibration program is implemented to calculate the calibration parameters by substituting calibration points' data to the integrated mathematic model. The disclosure also relates to an application device of the calibration method, wherein the device comprises: a celestial simulator to provide simulated sunlight or starlight, a two-axis rotator to acquire different the calibration points' data, a processing computer to record the calibration points' data and calculate the calibration parameters. The calibration method and device apply to many kinds of digital celestial sensors. By integrating external and internal parameters modeling, the disclosure improves the calibration precision. Meanwhile, the whole calibration process is simplified because precise installation and adjustment is not required.
摘要:
The disclosure relates to a rapid and high precision centroiding method for spots image comprising the following steps. First, the method requires convoluting the gray value of a pixel with a Gaussian filter and judging whether the result thereof exceeds a predetermined threshold. If the value exceeds the predetermined threshold, the method requires marking the current pixel with a flag to identify which spot it belongs to, and then accumulating the product of the gray value and a coordinate value of the same spot; and at the same time, accumulating the gray value of the same spot; and saving the results of the accumulation respectively. If the gray value of the pixel does not exceed the predetermined threshold, the method requires marking the current pixel as a background flag. After all pixels of the image has been disposed of completely, the method includes calculating a quotient of the accumulations of the product of the gray value and the coordinate value and the accumulations of the gray value, and outputting the quotients. At the same time, a centroiding system for spots image is also presented.
摘要:
A method for calibration of a digital celestial sensor is disclosed. First, an integrated mathematic model for imaging of a celestial sensor is established according to external and internal parameters of the calibration system of the celestial sensor. Second, by rotating two axes of a rotator by different angles, calibration points data are acquired and sent to a processing computer through an interface circuit. Finally, a two-step calibration program is implemented to calculate the calibration parameters by substituting calibration points' data to the integrated mathematic model. An application device of the calibration method is also provided. The device may include a celestial simulator to provide simulated sunlight or starlight, a two-axis rotator to acquire different calibration points' data, and a processing computer to record the calibration points' data and calculate the calibration parameters.
摘要:
The disclosure relates to a signal processing method for multi aperture sun sensor comprising the following steps: reading the information of sunspots in a row from a centroid coordinate memory, judging the absence of sunspots in that row, identifying the row and column index of the sunspots in the complete row, selecting the corresponding calibration parameter based on the row and column index, calculating attitude with the attitude calculation module the corresponding to identified sunspots, averaging the accumulated attitude of all sunspots and outputting the final attitude. At the same time, a signal processing device for multi aperture sun sensor is also presented. It is comprised of a sunspot absence judgment and an identification module and an attitude calculation module. The disclosure implements the integration of sun sensors without additional image processor or attitude processor, reduces field programmable gate array resource and improves the reliability of sun sensors.
摘要:
The disclosure relates to an APS based integrated sun sensor comprising: a diaphragm unit, a detection unit, a processing electronics unit and an interface unit. The diaphragm unit is operatively connected with the detection unit for forming a sunspots image. The detection unit is configured for outputting a gray value of each pixel. The processing electronics unit is operatively connected with the detector unit and the interface unit respectively, for evaluating an attitude angle on the basis of the gray value and coordinate of each pixel. The interface unit is operatively connected with a host computer, for transferring the attitude angle to the host computer. This disclosure has such merits as high accuracy, wide FOV (Field of View), low power consumption, low weight, small size and high update rate.
摘要:
A method for calibration of a digital sun sensor is disclosed. The method comprises following steps. First, an integrated mathematic model for imaging of a sun sensor is established according to the external and internal parameters of the calibration system of the sun sensor. Next, the two axis of the rotator are rotated by different angles. Then, calibration points' data are acquired and sent to a processing computer through an interface circuit. Finally, a two-step calibration program is implemented to calculate the calibration parameters by substituting the calibration points' data to the integrated mathematic model. The disclosure also relates to an application device of the calibration method. The device comprises: a sun simulator to provide the incident sunlight, a two-axis rotator to acquire different the calibration points' data, and a processing computer to record the calibration points' data and calculate the calibration parameters. The calibration method and device apply to many kinds of digital sun sensors. By integrated external and internal parameters modeling, the disclosure improves calibration precision. Meanwhile, the whole calibration process is simplified because precise installation and adjustment is not required.
摘要:
The disclosure relates to a rapid and high precision centroiding method for spots image comprising the following steps. First, the method requires convoluting the gray value of a pixel with a Gaussian filter and judging whether the result thereof exceeds a predetermined threshold. If the value exceeds the predetermined threshold, the method requires marking the current pixel with a flag to identify which spot it belongs to, and then accumulating the product of the gray value and a coordinate value of the same spot; and at the same time, accumulating the gray value of the same spot; and saving the results of the accumulation respectively. If the gray value of the pixel does not exceed the predetermined threshold, the method requires marking the current pixel as a background flag. After all pixels of the image has been disposed of completely, the method includes calculating a quotient of the accumulations of the product of the gray value and the coordinate value and the accumulations of the gray value, and outputting the quotients. At the same time, a centroiding system for spots image is also presented.
摘要:
The disclosure relates to an APS based integrated sun sensor comprising: a diaphragm unit, a detection unit, a processing electronics unit and an interface unit. The diaphragm unit is operatively connected with the detection unit for forming a sunspots image. The detection unit is configured for outputting a gray value of each pixel. The processing electronics unit is operatively connected with the detector unit and the interface unit respectively, for evaluating an attitude angle on the basis of the gray value and coordinate of each pixel. The interface unit is operatively connected with a host computer, for transferring the attitude angle to the host computer. This disclosure has such merits as high accuracy, wide FOV (Field of View), low power consumption, low weight, small size and high update rate.