摘要:
An open type nuclear magnetic resonance magnet system having an iron ring member. A superconducting coil and a superconducting switch form a closed-loop current circuit to generate a magnetic field. The generated magnetic field gains a magnetic flux circuit and executes magnetic field shielding through upper and lower iron yokes and a lateral iron yoke. The magnet system generates a desired magnetic field in a magnet imaging central area via the superconducting coil. To balance the extremely high electromagnetic force between the superconducting coil and the upper and lower iron yokes, an annular iron ring is mounted in a space defined by an inner perimeter wall of in a cryogenic container. The magnetic field distribution between the superconducting coil and the upper and lower iron yokes is changed via the iron ring, so that the electromagnetic interaction force therebetween is reduced.
摘要:
A device and a method for inhibiting vibration of a superconducting magnetic suspension rotor. The device comprises a rotor cavity housing, lateral coils, a superconducting rotor with a rotor top plane, a copper plate, pole shoes, a z-axial vibration measuring sensor, an x-axial vibration measuring sensor, a y-axial vibration measuring sensor, and a copper ring, the pole shoes having a spherical inner surface and being arranged symmetrically up and down so as to form a rotor cavity; the annular lateral coils being closely adjacent to an outside cylindrical surface of the rotor cavity housing and fixed to the same; the z-axial vibration measuring sensor being fixed to a central region of the copper plate; the x-axial vibration measuring sensor being mounted along an x-coordinate axis and the y-axial vibration measuring sensor mounted on a on the copper ring which is mounted along an equatorial plane of the rotor.
摘要:
A low resistance superconducting joint with high shielding characteristics, manufactured by: corroding copper on the outer surface at the end of a NbTi/Cu superconducting wire to form terminal NbTi superconducting filaments; inserting same number of NbTi superconducting filaments into each through hole of the niobium layer of a Nb/NbTi/Cu multilayer composite rod; pressing at the outside of the Nb/NbTi/Cu multilayer composite rod to combine the Nb/NbTi/Cu multilayer composite rod and NbTi superconducting filaments together to form a joint; and inserting the joint into a YBCO tube, and then filling the YBCO tube with molten bismuth-lead-tin-cadmium (BiPbSnCd) alloy solder to form a superconducting joint with high shielding and low resistance characteristics.
摘要:
A superconducting magnet system for high power microwave source focusing and cyclotron electronic apparatus is provided, wherein, the superconducting magnet comprises an inner superconducting main coil, an outer superconducting main coil, two end compensation coils, a regulating coil and a central regulating coil. These coils are formed by coiling Nb3Sn/Cu superconducting wire. The superconducting magnet can operate off-line through solid nitrogen formed by a cryocooler and high-pressure nitrogen. The superconducting magnet and the superconducting switch constitute a closed loop, thereby achieving magnetic field stability, without outside electromagnetic interference. The superconducting magnet system can provide a magnetic field having special spatial distribution and high stability.
摘要:
A process for fabricating an ultra-low-resistance superconducting joint that has high shielding characteristics. The process includes: corroding copper on the outer surface at the end of a NbTi/Cu superconducting wire to form terminal NbTi superconducting filaments; inserting same number of NbTi superconducting filaments into each through hole of the niobium layer of a Nb/NbTi/Cu multilayer composite rod; pressing at the outside of the Nb/NbTi/Cu multilayer composite rod to combine the Nb/NbTi/Cu multilayer composite rod and NbTi superconducting filaments together to form a joint; and inserting the joint into a YBCO tube, and then filling the YBCO tube with molten bismuth-lead-tin-cadmium (BiPbSnCd) alloy solder to form a superconducting joint with high shielding and low resistance characteristics.
摘要:
A self-shield open magnetic resonance imaging superconducting magnet comprises five pairs of coils: shim coils, first main magnetic coils, second main magnetic coils, third main magnetic coils, and shielding coils. The five pairs of coils are symmetric about the center. The shim coils are arranged closest to the center point; the first main magnetic coils, the second main magnetic coils, the third main magnetic coils, and the shielding coils are arranged in sequence outside. The first main magnetic coils are connected with reverse current. The second and third main magnetic coils are connected with positive current for providing the main magnetic field strength. The shim coils are connected with positive current for compensating the magnetic field in the central region. The shielding coils are connected with reverse current for creating a magnetic field opposite to the main magnetic field for compensating the stray magnetic field in the space.
摘要:
A self-shield open magnetic resonance imaging superconducting magnet comprises five pairs of coils: shim coils, first main magnetic coils, second main magnetic coils, third main magnetic coils, and shielding coils. The five pairs of coils are symmetric about the center. The shim coils are arranged closest to the center point; the first main magnetic coils, the second main magnetic coils, the third main magnetic coils, and the shielding coils are arranged in sequence outside. The first main magnetic coils are connected with reverse current. The second and third main magnetic coils are connected with positive current for providing the main magnetic field strength. The shim coils are connected with positive current for compensating the magnetic field in the central region. The shielding coils are connected with reverse current for creating a magnetic field opposite to the main magnetic field for compensating the stray magnetic field in the space.
摘要:
A high magnetic field superconducting magnet system with large crossing warm bore is disclosed, a superconducting coil thereof includes a low temperature superconducting coil and a high temperature superconducting coil. The superconducting coils are connected to a thermal shield and a flange of a low temperature container by a supporting drawbar, thus the superconducting coils as a whole are supported inside the low temperature container. A thermal switch is connected to a primary cold head and a secondary cold head of the cryocooler. The secondary cold head of the cryocooler is connected to a magnet-reinforced supporting flange at the two ends of the low temperature superconducting coil and the high temperature superconducting coil by a cold conduction strip. The superconducting magnet system has a room temperature bore in horizontal direction and a room temperature bore in vertical direction. A thermal shield outside the room temperature bore in horizontal direction is used for preventing thermal radiation by the room temperature bore in horizontal direction to the superconducting coils. A separation supporting frame separates the low temperature superconducting coil and the high temperature superconducting coil into two parts, such that a two-dimensional room temperature space can be included inside the superconducting magnet when the superconducting magnet system is formed as a whole.
摘要:
A high magnetic field superconducting magnet system with large crossing warm bore is disclosed, a superconducting coil thereof includes a low temperature superconducting coil and a high temperature superconducting coil. The superconducting coils are connected to a thermal shield and a flange of a low temperature container by a supporting drawbar, thus the superconducting coils as a whole are supported inside the low temperature container. A thermal switch is connected to a primary cold head and a secondary cold head of the cryocooler. The secondary cold head of the cryocooler is connected to a magnet-reinforced supporting flange at the two ends of the low temperature superconducting coil and the high temperature superconducting coil by a cold conduction strip. The superconducting magnet system has a room temperature bore in horizontal direction and a room temperature bore in vertical direction. A thermal shield outside the room temperature bore in horizontal direction is used for preventing thermal radiation by the room temperature bore in horizontal direction to the superconducting coils. A separation supporting frame separates the low temperature superconducting coil and the high temperature superconducting coil into two parts, such that a two-dimensional room temperature space can be included inside the superconducting magnet when the superconducting magnet system is formed as a whole.
摘要:
A superconducting magnet system for generating high homogeneity and high magnetic field consists of a main coil, an outer coil, a quench protection circuit, a quench heater and a power supply. The main coil is composed of many concentric solenoid coils which are arranged from inside to outside. The outer coil out of the main coil includes a first back roll coil, a second back roll coil, a first superconducting coil for compensating sixth harmonic component, a second superconducting coil for compensating sixth harmonic component, a shielding ring and a shielding coil from inside to outside. Every loop circuit of the quench protection circuit is composed of a corresponding protection resistor, a diode and coil which is connected in series each other, and each coil has a corresponding quench protection heater. The classification linear diameter difference of the superconducting coils which contact each other in main coil is less than 0.05 mm. The homogeneity of the magnetic field in the 50 mm diameter working space is 0.15 ppm, because the high order harmonic component of the field is compensated by back roll method.