Abstract:
Methods, apparatus, and means for maintaining a low output common-mode voltage in a driver are provided. One example apparatus includes a first differential amplifier stage configured to provide a differential output for the apparatus; and a second differential amplifier stage configured to drive the first differential amplifier stage, the second differential amplifier stage including a pair of pre-driver amplifiers, a pair of n-stage circuits, and an input skew averaging circuit, wherein each of the pair of n-stage units is split into two half blocks. The input skew averaging circuit is configured to suppress the output common-mode voltage by driving the blocks with complementary digital inputs to average out a skew in a gate-to-source voltage of the pair of n-stage circuits. For certain aspects, two feed-forward capacitors may be added to enhance the transconductance and operating speed of main transistors of the first differential amplifier stage.
Abstract:
An integrated circuit device (200) includes a first and second differential I/O pins (TRXP/TRXN) and a surge protection circuit. The surge protection circuit includes a protection transistor, a positive surge detection circuit, and a negative surge detection circuit. The protection transistor is connected between the first and second I/O pins and has a gate to receive a control signal (CTRL). The protection transistor is turned on to connect the I/O pins together if the positive surge detection circuit detects a positive surge energy on either of the I/O pins and/or if the negative surge detection circuit detects a negative surge energy on either of the I/O pins. The surge protection circuit provides increased protection for Ethernet device against undesirable energy in a manner that does not adversely affect the performance of the device.