Abstract:
Exhaust gas to be cleaned is introduced into a conversion and mixing duct and the exhaust gas flows through the duct along a predetermined longitudinal direction. A reducing agent, such as aqueous urea solution, is injected into the exhaust gas stream in the conversion and mixing duct. The exhaust gas stream is then deflected into a reaction duct which extends parallel to or coaxially around the conversion and mixing duct. The exhaust gas then flows in the opposite direction through the reaction duct. A reduction catalyst is disposed in the reaction duct, where the reducible components of the exhaust gas are reduced. The exhaust gas cleaned in this manner is then discharged from the reaction duct.
Abstract:
Exhaust gas to be cleaned is introduced into a conversion and mixing duct and the exhaust gas flows through the duct along a predetermined longitudinal direction. A reducing agent, such as aqueous urea solution, is injected into the exhaust gas stream in the conversion and mixing duct. The exhaust gas stream is then deflected into a reaction duct which extends parallel to or coaxially around the conversion and mixing duct. The exhaust gas then flows in the opposite direction through the reaction duct. A reduction catalyst is disposed in the reaction duct, where the reducible components of the exhaust gas are reduced. The exhaust gas cleaned in this manner is then discharged from the reaction duct.
Abstract:
The process and the device are provided for the selective catalytic reduction of nitrogen oxides in an oxygen-containing gaseous medium. The reducing agent required for the reaction is prepared in a separate preparation reactor. A substance that can be converted into the reducing agent is introduced into a carrier gas in the preparation reactor and, as a result, is converted by substantially thermal conversion. The energy required for the conversion is provided by the carrier gas.