Abstract:
A method and a device are provided for detecting the respiratory activity of a person and for controlling the time progression of breathing gas pressure, especially in accordance with physical parameters and considering parameters indicating the momentary physiological condition of the breathing person. The device for detecting the respiratory activity of a person has at least one sensor that provides a first signal indicating the breathing gas flow, wherein at least one signal processing device is provided for processing the first signal. The signal processing device is configured in such a way that said device determines a reference-relation on the basis of the first signal detected during a first time interval. On the basis thereof, the device determines a correlation-relation between the reference-relation and the first signal. The device generates an output signal indicating the respiratory activity and/or the physiological condition of the breathing person by considering at least the correlation-relation.
Abstract:
A modular insert is provided for defining an air path for use with CPAP, VPAP, auto CPAP or a ventilator. The modular air path insert may be provided with one or more sound suppressing structures, e.g., to act as mufflers. The insert can be readily exchanged or replaced, e.g., for hygienic purposes.
Abstract:
An apparatus for supplying a respiratory gas to a patient within the scope of the diagnosis and/or the treatment of sleep-related breathing disorders includes an electronic signal processing device for generating a pressure control signal on the basis of indicative signals relating to the breathing activity and/or the physiological state of a person. The signal processing device comprises a signal inputting device and an extraction device for generating data field entries according to predefined signal analysis procedures. A pressure signal generator is provided for generating the pressure control signal, taking into account determined data field entries which are at least selected by the extraction device.
Abstract:
A method and a device are provided for detecting the respiratory activity of a person and for controlling the time progression of breathing gas pressure, especially in accordance with physical parameters and considering parameters indicating the momentary physiological condition of the breathing person. The device for detecting the respiratory activity of a person has at least one sensor that provides a first signal indicating the breathing gas flow, wherein at least one signal processing device is provided for processing the first signal. The signal processing device is configured in such a way that said device determines a reference-relation on the basis of the first signal detected during a first time interval. On the basis thereof, the device determines a correlation-relation between the reference-relation and the first signal. The device generates an output signal indicating the respiratory activity and/or the physiological condition of the breathing person by considering at least the correlation-relation.
Abstract:
The invention relates to a device for supplying a respiratory gas to a patient within the scope of the diagnosis and/or the treatment of sleep-related breathing disorders. The invention especially relates to a CPAP appliance comprising self-optimising dual level pressure regulation. According to the invention, the device for supplying a respiratory gas comprises an electronic signal processing device for generating a pressure control signal (p) on the basis of indicative signals (5) relating to the breathing activity and/or the physiological state of a person. The signal processing device (1) comprises a signal inputting device and an extraction device (2) for generating data field entries (3) according to predefined signal analysis procedures. A pressure signal generator (4) is provided for generating the pressure control signal (p), taking into account determined data field entries (3) which are at least selected by the extraction device (2).
Abstract:
A method and a device are provided for detecting the respiratory activity of a person and for controlling the time progression of breathing gas pressure, especially in accordance with physical parameters and considering parameters indicating the momentary physiological condition of the breathing person. The device for detecting the respiratory activity of a person has at least one sensor that provides a first signal indicating the breathing gas flow, wherein at least one signal processing device is provided for processing the first signal. The signal processing device is configured in such a way that said device determines a reference-relation on the basis of the first signal detected during a first time interval. On the basis thereof, the device determines a correlation-relation between the reference-relation and the first signal. The device generates an output signal indicating the respiratory activity and/or the physiological condition of the breathing person by considering at least the correlation-relation.
Abstract:
A method and a device are provided for detecting the respiratory activity of a person and for controlling the time progression of breathing gas pressure, especially in accordance with physical parameters and considering parameters indicating the momentary physiological condition of the breathing person. The device for detecting the respiratory activity of a person has at least one sensor that provides a first signal indicating the breathing gas flow, wherein at least one signal processing device is provided for processing the first signal. The signal processing device is configured in such a way that said device determines a reference-relation on the basis of the first signal detected during a first time interval. On the basis thereof, the device determines a correlation-relation between the reference-relation and the first signal. The device generates an output signal indicating the respiratory activity and/or the physiological condition of the breathing person by considering at least the correlation-relation.
Abstract:
An apparatus for supplying a respiratory gas to a patient within the scope of the diagnosis and/or the treatment of sleep-related breathing disorders includes an electronic signal processing device for generating a pressure control signal on the basis of indicative signals relating to the breathing activity and/or the physiological state of a person. The signal processing device comprises a signal inputting device and an extraction device for generating data field entries according to predefined signal analysis procedures. A pressure signal generator is provided for generating the pressure control signal, taking into account determined data field entries which are at least selected by the extraction device.
Abstract:
An apparatus for supplying a respiratory gas to a patient within the scope of the diagnosis and/or the treatment of sleep-related breathing disorders includes an electronic signal processing device for generating a pressure control signal on the basis of indicative signals relating to the breathing activity and/or the physiological state of a person. The signal processing device includes a signal inputting device and an extraction device for generating data field entries according to predefined signal analysis procedures. A pressure signal generator is provided for generating the pressure control signal, taking into account determined data field entries which are at least selected by the extraction device.
Abstract:
A device for furnishing a breathing gas at alternating pressure levels has a feeder to feed the breathing gas, a pressure adjusting device for triggering the feeder set-point breathing gas pressure signal, furnishes the breathing gas at a set-point, a pressure specification device for generating a pressure signal, and parameter-determination unit for furnishing parameters representative of at least of instantaneous pressure (p), progression of time (t), and instantaneous breathing gas flow (v). The pressure specification device includes a computer circuit configured such that, at least in the expiratory phase, pressure is adjusted on the basis of a dynamic or nonlinear pressure guidance function, which takes parameters into account that are indicative of the breathing gas flow and the progression of time. As a result, the tendency to lowering the breathing gas pressure in conjunction with the extent of the breathing gas flow decreases with increasing progression of time.