Abstract:
The present invention provides a hybrid adsorption heat exchanging device comprising: at least one tubular or micro channel structure for carrying a heat transfer fluid; the external surface of said structure being provided with extensions in at least two locations; said extensions forming a bed therebetween for providing one or more adsorbent materials; a coating of adsorbent material being provided on at least a part of said extensions.
Abstract:
The present invention provides a hybrid adsorption heat exchanging device comprising: at least one tubular or micro channel structure for carrying a heat transfer fluid; the external surface of said structure being provided with extensions in at least two locations; said extensions forming a bed therebetween for providing one or more adsorbent materials; a coating of adsorbent material being provided on at least a part of said extensions.
Abstract:
A method and apparatus for energy-efficient desiccant dehumidification of air or other gases to low humidity levels is disclosed. The method and apparatus includes a desiccant rotor (wheel) having more than one dehumidification zone or sector. Separate dehumidification sectors may be used to dehumidify separate air or gas streams, or they may be used to dehumidify a single air or gas stream by passing it through more than one sector. All or a portion of the discharge air or gas from a dehumidification sector is used for all or a portion of reactivation inlet air or gas prior to heating. The desiccant wheel may include more than one reactivation sector, with separate air or gas sources for each sector. The desiccant wheel may include a purge sector between the reactivation and dehumidification sectors to improve the thermal efficiency of the dehumidification process.
Abstract:
An active wheel desiccant dehumidifier is controlled for improved energy savings by modulating operation characteristics including process air flow, reactivation air flow, temperatures, and wheel rotation in response to changing conditions.
Abstract:
The present invention generally discloses desiccant dehumidifiers control systems. In particular, the present invention relates to solid desiccant dehumidifiers which use a rotor (commonly called a wheel) to dehumidify a process airstream. The invention provides a novel apparatus for control of desiccant dehumidifiers and to an improved method of control of such dehumidifiers, and also to dehumidifiers provided with such control systems.
Abstract:
A method and apparatus for energy-efficient desiccant dehumidification of air or other gases to low humidity levels is disclosed. The method and apparatus includes a desiccant rotor (wheel) having more than one dehumidification zone or sector. Separate dehumidification sectors may be used to dehumidify separate air or gas streams, or they may be used to dehumidify a single air or gas stream by passing it through more than one sector. All or a portion of the discharge air or gas from a dehumidification sector is used for all or a portion of reactivation inlet air or gas prior to heating. The desiccant wheel may include more than one reactivation sector, with separate air or gas sources for each sector. The desiccant wheel may include a purge sector between the reactivation and dehumidification sectors to improve the thermal efficiency of the dehumidification process.
Abstract:
An active wheel desiccant dehumidifier is controlled for improved energy savings by modulating operation characteristics including process air flow, reactivation air flow, temperatures, and wheel rotation in response to changing conditions.
Abstract:
The present invention generally discloses desiccant dehumidifiers control systems. In particular, the present invention relates to solid desiccant dehumidifiers which use a rotor (commonly called a wheel) to dehumidify a process airstream. The invention provides a novel apparatus for control of desiccant dehumidifiers and to an improved method of control of such dehumidifiers, and also to dehumidifiers provided with such control systems.