Abstract:
Systems, methods, and apparatus relating to the use of Stirling engine technology to convert heat, such as from solar radiation, to mechanical work or electricity. Apparatus, systems, components, and methods relating to energy converting apparatus are described herein. In one aspect, the invention relates to the field alignment of panels and the assembly of a concentrator. In another aspect, a passive balancer is used in combination with a ring frame and other moving masses to reduce engine forces and vibration on the structure of the energy converting apparatus while maintaining properly constrained alignment of various suspended masses. In yet another aspect, the invention relates to various over-insolation control and management strategy to prevent overheating of the energy converting apparatus or components and subsystems thereof.
Abstract:
Systems, methods, and apparatus relating to the use of Stirling engine technology to convert heat, such as from solar radiation, to mechanical work or electricity. Apparatus, systems, components, and methods relating to energy converting apparatus are described herein. In one aspect, the invention relates to the field alignment of panels and the assembly of a concentrator. In another aspect, a passive balancer is used in combination with a ring frame and other moving masses to reduce engine forces and vibration on the structure of the energy converting apparatus while maintaining properly constrained alignment of various suspended masses. In yet another aspect, the invention relates to various over-insolation control and management strategy to prevent overheating of the energy converting apparatus or components and subsystems thereof.
Abstract:
Systems, methods, and apparatus relating to the use of Stirling engine technology to convert heat, such as from solar radiation, to mechanical work or electricity. Apparatus, systems, components, and methods relating to energy converting apparatus are described herein. In one aspect, the invention relates to the field alignment of panels and the assembly of a concentrator. In another aspect, a passive balancer is used in combination with a ring frame and other moving masses to reduce engine forces and vibration on the structure of the energy converting apparatus while maintaining properly constrained alignment of various suspended masses. In yet another aspect, the invention relates to various over-insolation control and management strategy to prevent overheating of the energy converting apparatus or components and subsystems thereof.
Abstract:
Systems, methods, and apparatus relating to the use of Stirling engine technology to convert heat, such as from solar radiation, to mechanical work or electricity. Apparatus, systems, components, and methods relating to energy converting apparatus are described herein. In one aspect, the invention relates to the field alignment of panels and the assembly of a concentrator. In another aspect, a passive balancer is used in combination with a ring frame and other moving masses to reduce engine forces and vibration on the structure of the energy converting apparatus while maintaining properly constrained alignment of various suspended masses. In yet another aspect, the invention relates to various over-insolation control and management strategy to prevent overheating of the energy converting apparatus or components and subsystems thereof.
Abstract:
A heater head for use with a thermal regenerative machine has a heater shell formed from a single piece of material. The shell has a tubular body with a cap-shaped end portion provided at a distal end and an open mouth portion provided at a proximal end. The heater head also has a mounting flange with a receiving portion configured to mate in fixed assembly with the open mouth portion of the heater shell. The mounting flange is constructed and arranged to mount the shell assembly to a housing of the thermal regenerative machine. The shell assembly and housing are hermetically sealed there between. Furthermore, a heater head for use with a thermal regenerative machine typically has a heater shell and a heat exchanger portion. The heat exchanger portion is formed substantially from a corrugated piece of sheet metal. The heat exchanger portion is affixed to an inner portion of the heater shell. The heater shell and heat exchanger portion cooperate to form a plurality of working gas flow paths having a large thermally conductive surface area.