摘要:
The present application relates to a method of fabricating planar circuits using a photo lithographic mask set, to the photo lithographic mask set, and to a planar circuit fabricated with the photo lithographic mask set. The instant invention involves separating a photo lithographic mask into two parts, namely, a master mask and one or more slave masks. The master mask and the one or more slave masks form a photo lithographic mask set that is used iteratively to fabricate the planar circuits. In particular, the master mask is used as a template to provide the general layout for the planar circuit, while each slave mask is varied to tune and/or tailor the planar circuit. Since only a small portion of the planar circuit is redesigned and/or rewritten as a new mask (i.e., the slave mask), the instant invention provides a simple and cost effective method for optimizing planar circuits. Furthermore, since most mask errors will originate from the master mask, the instant invention provides an efficient method of correcting errors on planar circuits using the one or more slave masks.
摘要:
A tunable PLC optical filter having sequentially connected thermally tunable Mach-Zehnder (MZ) interferometers is described. The MZ interferometers, having free spectral ranges matching ITU frequency grid spacing, are tuned so as to have a common passband centered on the frequency of the signal being selected, while having at least one of the stopbands centered on any other ITU frequency. Any other optical channel that may be present at any other ITU frequency is suppressed as a result. The PLC chip, including a zero-dispersion lattice-filter interleaver stage, a switchable fine-resolution stage and, or a retroreflector for double passing the filter, is packaged into a hot-pluggable XFP transceiver package. A compensation heater is used to keep constant the amount of heat applied to the PLC chip inside the XFP package, so as to lessen temperature variations upon tuning of the PLC optical filter.
摘要:
A tunable PLC optical filter having sequentially connected thermally tunable Mach-Zehnder (MZ) interferometers is described. The MZ interferometers, having free spectral ranges matching ITU frequency grid spacing, are tuned so as to have a common passband centered on the frequency of the signal being selected, while having at least one of the stopbands centered on any other ITU frequency. Any other optical channel that may be present at any other ITU frequency is suppressed as a result. The PLC chip, including a zero-dispersion lattice-filter interleaver stage, a switchable fine-resolution stage and, or a retroreflector for double passing the filter, is packaged into a hot-pluggable XFP transceiver package. A compensation heater is used to keep constant the amount of heat applied to the PLC chip inside the XFP package, so as to lessen temperature variations upon tuning of the PLC optical filter.
摘要:
The invention relates to a variable optical attenuator constructed as a Mach Zehnder planar lightwave circuit, particularly including a channel waveguide support structure for heat isolation and stress relief to reduce polarization dependent loss (PDL) and power consumption in the device. Power reduction trenches comprise longitudinal segments having small stress relief pillars of cladding material left in between them in the etching process. The waveguides of the MZI are supported by a main pillar structure and integral stress relief pillars which remain after removal of the trenches. The waveguide is surrounded by air on three sides for improved heat isolation. The performance of the present invention shows substantial improvement in PDL and extinction ratio over the prior art continuous trench design, and also, to a smaller degree, over the case where power reduction trenches are not used at all. Segmented trenches appear to allow for the lowest stress on the two waveguide arms of all the cases including no trench and trenched devices.
摘要:
The invention relates to waveguiding structures in planar lightwave circuit devices that include a transition region between a slab waveguide and channel waveguides to reduce optical coupling loss. In particular star couplers and arrayed waveguide gratings incorporating the transition region of the present invention demonstrate reduced insertion loss. By creating a transition region composed of transverse rows intersecting the output waveguide array, where the rows have equal dimensions and the effective refractive index is controlled by increasing the spacing width gradually from row to row, an adiabatic transition is created from slab waveguide to channel waveguide array. This structure provides low insertion loss within practical manufacturing tolerances. In addition, the present invention has found that by incorporating the transition region of the present invention into an AWG, the reduced insertion loss can be controlled as uniform insertion loss across the channels.
摘要:
Disclosed is a method which speeds up interpretive test program code execution and allows rapid changes to the test code. The tester utilized with the present invention uses the interpretive language TPL (Test Program Language) for device test programs. The present invention uses the first execution of a statement in an interpreted environment to build a table of address value pairs corresponding to the values computed by the statement. It then changes the pseudo code of the statement to use a short assembly language routine to write the values in the table fo their appropriate addresses, using the memory mapped features of the test head hardware. This is done by translating each TPL line into pseudo code as it is loaded. The first time a line of code is executed, it builds a table which contains all the values computed and the addresses to which they are written. The next time the statement is executed, the verb pointer points to the turbo software which is executed rather than the TPL statement. Since the test head hardware is memory mapped, no distinction needs to be made between data being saved by the software and data being written to the test head. All error checking and calibration is done by the emulator code the first time the statement is executed and does not need to be repeated thereafter.