摘要:
A bullet having a cavity in its forward end that is open at that end and a filling situated within said cavity. Preferably, the filling comprises an elastomer. Preferably, the elastomer filling is vulcanized. More preferably, the vulcanized elastomer filling has a Shore hardness in the range from about 6 to about 90. Alternatively, the filling is a colored rigid polymer filling, if a non-expanding training hollow point bullet is desired. In particular, the invention is a filling and its application to hollow point bullets for the purposes of: improving bullet expansion during the penetration of liquid targets; preventing clogging with debris from intermediate targets; increasing expansion during the perforation of hard materials; preventing the expansion of training bullets; and allowing users to identify different cartridge designs. The invention is also devices and methods for introducing the filling into the cavity.
WHERE Z is an oxaradical (a) R-O-(CH2)n-O-, (b) R-O-(CH2)m-O(CH2)n-O-; n is an integer equal to 2-3; m is an integer equal to 2-3 and R is an alkyl radical having one to five carbon atoms; and pharmaceutically acceptable, non-toxic, acid addition salts thereof. Illustrative are compounds where R is isopropyl or tbutyl and Z is CH3-O-CH2-CH2-O-, or CH3-O-CH2CH2-O-CH2CH2-O-. Also pharmaceutical compositions containing these compounds, and the use thereof in treating cardiovascular diseases.
摘要:
The invention relates to a chiral selector useful in separating underivatized enantiomers of nonsteroidal anti-inflammatory agents, particularly naproxen and other arylacetic acid compounds, and relates to a process for achieving such separation utilizing the chiral selector, which is also useful in achieving the enantiomeric separation of amines, alcohol derivatives, epoxides and sulfoxides. The invention is also directed to an apparatus which comprises the chiral selectors.
摘要:
A distance interpolator incorporated into a total station and a method for digitally interpolating a distance measurement from the total station to a target, such that the distance interpolator measures the distance from the total station to the target using primarily digital electronics and statistical analysis. In one embodiment, the total station transmits an energy pulse from the electronic distance measuring portion of the total station, with the energy pulse directed at the target. This embodiment then receives at the electronic distance measuring portion the energy pulse reflected from the target. This embodiment also contains a reference oscillator and digital counter, which counts the number of reference oscillator clock pulses that elapse from the time the energy pulse is transmitted to the time the reflection of the energy pulse is received. This embodiment further accumulates counts for a number of additional energy pulses, and then calculates the average value of the counts over all energy pulses transmitted. This embodiment then calculates the distance between the total station and the target using the average value of the counts, the frequency of the reference oscillator, and the speed of light in the environment in which the counts were obtained.