Abstract:
A process and apparatus for identifying defects within the structure of a tubular sleeve used to make toothed belts, the sleeve, having a toothed inner surface 2a, is operatively mounted on rollers 5, 6 operable in rotation to move the sleeve transversely to the extension of the teeth 3. An ultrasonic emitting and receiving member 15 movable parallel to the rollers 5, 6 detects the presence of structural cavities 3a in the sleeve. An electronic processing unit 20 carries out the identification and memorization of the position of the structural cavities 3a on the longitudinal extension of the sleeve 2.
Abstract:
A process for continuously producing an elastomeric composition includes the step of dosing into at least one extruder at least one ingredient by means of a dosing device, wherein the dosing step is regulated on the basis of: i) actual weight values of the at least one ingredient measured at dosing instants of an evaluation time period of predetermined duration preceding a given dosing instant; ii) expected weight values of the at least one ingredient calculated for corresponding dosing instants of the evaluation time period of predetermined duration preceding the dosing instant; and iii) expected weight values of the at least one ingredient calculated for a prediction time period of predetermined duration following the dosing instant; so as to minimize a prediction weight error between actual weight values measured during the prediction time period and the expected weight values calculated for the prediction time period, and a model weight error between actual weight values measured during the prediction time period and theoretical weight values of the at least one ingredient corresponding to the target weight loss of the at least one ingredient.
Abstract:
A tubular sleeve (2) having a toothed inner surface (2a) is operatively mounted on rollers (12, 13) which rotate the sleeve (2) transversely to the extension of the teeth (5). photochromatic sensor (22) which is movable parallel to the rollers (12, 13) detects the presence of possible separation areas (9) between the sewn together end edges (6a, 6b) of a lining fabric (6) applied to the toothed surface (2a) of the sleeve (2), the end edges (6a, 6b) being chromatically differentiated from the elastomeric material (4) and from each other. An electronic processing unit (25) carries out the identification and storage of the position of the separation areas (9) detected by the photochromatic sensor (22). With the aid of a reading member (27) associated with the photochromatic sensor (22), the processing unit (25) identifies the position of the junction (7) between the end edges (6a, 6 b) on the extension outline of the toothed surface (2a), in order to detect and store the presence of possible anomalous positionings of the junction itself.
Abstract:
An apparatus and a method for inspection of the toothed configuration of an elastomeric tubular sleeve which will later be cut into short lengths to produce toothed driving belts. A tubular sleeve (2) having a toothed inner surface (2a) is operatively mounted around rollers (5, 6) operable in rotation to move the sleeve transversely to the direction of the teeth (3). A reading member (15) movable parallel to the rollers (5, 6) detects, through the repeated reading of the height of the toothed surface (2a) passing under a given read point, the transverse outline of the individual teeth (3), to enable comparison with geometric parameters stored in a processing unit (20). The translation speed of the sleeve (2) is identified by measuring the time necessary to the passage of two characteristic points of two contiguous teeth (3). Assigned to each height value detected by the reading member (15) is a corresponding distance value from one of the characteristic points of the teeth (3).
Abstract:
A sleeve (2) of elastomeric material is operationally mounted on support rollers (5, 6) which can be operated to rotate the sleeve. At least one or more television camera (15) shoots the surface (2a) of the sleeve (2) which is illuminated with light at a low angle. The superficial appearance of the sleeve (2) is recorded in the form of images, each divided into a plurality of pixels (P) distributed in an orderly fashion. The values of luminosity of the individual pixels (P) are recorded and processed to highlight those pixels wherein due to superficial irregularities (C) on the sleeve (2), a variation is detected of the light reflected by the surface (2a) of the sleeve itself. On the basis of the position occupied by the highlighted pixels (P) it is possible to go back to the position of the superficial defects (C) along the extension of the sleeve (2).