摘要:
A code region of an application is instrumented by a multi-pass profiler with first annotations for generating profile data. The application is executed with the first annotations, wherein executing the application with the first annotations generates first profile data for the code region. The multi-pass profiler identifies, from the first profile data, the code region as a delinquent code region. The multi-pass profiler determines second annotations based, at least in part, on the first profile data and the at least one of the first annotations that defines the delinquent code region. The multi-pass profiler instruments, based on the first profile data, a code sub-region of the delinquent code region with the second annotations for generating profile data. The application is executed with second annotations, wherein executing the application with the second annotations generates second profile data for the code sub-region.
摘要:
A computer-implemented method for determining whether an array within a loop can be privatized for that loop is presented. The method calculates the array sections that require first or last privatization and copies only those sections, reducing the privatization overhead of the known solutions.
摘要:
A method for handling Simple Instruction Multiple Data (SIMD) architecture restrictions through data reshaping, padding, and alignment, including: building a global call graph; creating array descriptors for maintaining array attributes; gathering array affinity information; performing global pointer analysis and escape analysis; performing loop-based analysis to identify a SIMD opportunity; building an array affinity graph; performing graph partitioning on the array affinity graph to construct an array reshaping plan; performing data reshaping on the array affinity graph; and performing SIMDization on the array affinity graph wherein SIMDization comprises automatic generation of SIMD code.
摘要:
A compiling program with cache utilization optimizations employs an inter-procedural global analysis of the data access patterns of compile units to be processed. The global analysis determines sufficient information to allow intelligent application of optimization techniques to be employed to enhance the operation and utilization of the available cache systems on target hardware.
摘要:
Systems, methods and computer products for implementing shadow versioning to improve data dependence analysis for instruction scheduling. Exemplary embodiments include a method to identify loops within the code to be compiled, for each loop a dependence initializing a matrix, for each loop shadow identifying symbols that are accessed by the loop, examining dependencies, storing, comparing and classifying the dependence vectors, generating new shadow symbols, replacing the old shadow symbols with the new shadow symbols, generating alias relationships between the newly created shadow symbols, scheduling instructions and compiling the code.
摘要:
A method for handling Simple Instruction Multiple Data (SIMD) architecture restrictions through data reshaping, padding, and alignment, including: building a global call graph; creating array descriptors for maintaining array attributes; gathering array affinity information; performing global pointer analysis and escape analysis; performing loop-based analysis to identify a SIMD opportunity; building an array affinity graph; performing graph partitioning on the array affinity graph to construct an array reshaping plan; performing data reshaping on the array affinity graph; and performing SIMDization on the array affinity graph wherein SIMDization comprises automatic generation of SIMD code.
摘要:
A method for providing parallel processing capabilities including: performing scalar and array privatization analysis via a compiler; checking whether an assignment statement is reducible; recognizing reduction patterns through a pattern matching algorithm; classifying a reduction type of each of the reduction patterns; and performing transformations and code generation for each reduction the reduction type of each of the reduction patterns.
摘要:
A mechanism for minimizing effective memory latency without unnecessary cost through fine-grained software-directed data prefetching using integrated high-level and low-level code analysis and optimizations is provided. The mechanism identifies and classifies streams, identifies data that is most likely to incur a cache miss, exploits effective hardware prefetching to determine the proper number of streams to be prefetched, exploits effective data prefetching on different types of streams in order to eliminate redundant prefetching and avoid cache pollution, and uses high-level transformations with integrated lower level cost analysis in the instruction scheduler to schedule prefetch instructions effectively.
摘要:
May-constant propagation is a technique used to propagate a constant through the call graph and control flow graph by ignoring possible kills and re-definitions with low probability. Variables associated with constants in program code are determined. Execution flow probabilities are executed for code segments of the program code that comprise the variables. The execution flow probabilities are calculated based on flow data for the program code. At least a first of the code segments is determined to have a high execution flow probability. The first of the constants associated with the first variable are propagated through the flow data to generate modified flow data.
摘要:
Systems, methods and computer products for compiler support for aggressive safe load speculation. Exemplary embodiments include a method for aggressive safe load speculation for a compiler in a computer system, the method including building a control flow graph, identifying both countable and non-countable loops, gathering a set of candidate loops for load speculation, for each candidate loop in the set of candidate loops gathered for load speculation performing computing an estimate of the iteration count, delay cycles, and code size, performing a profitability analysis and determine an unroll factor based on the delay cycles and the code size, transforming the loop by generating a prologue loop to achieve data alignment and an unrolled main loop with loop directives, indicating which loads can safely be executed speculatively and performing low-level instruction on the generated unrolled main loop.