Abstract:
A cylindrical superconducting magnet system for use in magnetic resonance imaging has axially aligned primary superconducting coils surrounded by a thermal radiation shield within a vacuum vessel. A gradient coil assembly is axially aligned with and located radially within the primary superconducting coils. An assembly support is, radially positioned outside of the primary superconducting coils and is mechanically attached to the gradient coil assembly at a number of locations around the circumference of the gradient coil assembly, and at a number of axial locations along the gradient coil assembly, by radially-directed mechanical attachments that pass though through-holes through the vacuum vessel and the thermal radiation shield, and mechanically isolated from the vacuum vessel. At least some of the mechanical attachments each comprise an active force transducer arranged to provide impulses of force onto a surface of the gradient coil assembly to oppose vibrations of the gradient coil assembly.
Abstract:
A variable rake shear comprises a housing (8), a first blade (1) mounted in a first blade mounting (4), a second blade (2) mounted in a second blade mounting (3); and a control device (5) to control movement of one blade mounting to shear the material. Each blade mounting is movable in at least one dimension relative to the housing. One blade is an active blade (1) and the other blade is a passive blade (2). A rake adjustment mechanism (6a, 6b) for at least one of the mountings (3, 4) and the mounting (4) for the active blade (1) has a torque tube linkage mechanism (10, 11, 12).
Abstract:
A method and system for prediction of respiratory motion from 3D thoracic images is disclosed. A patient-specific anatomical model of the respiratory system is generated from 3D thoracic images of a patient. The patient-specific anatomical model of the respiratory system is deformed using a biomechanical model. The biomechanical model is personalized for the patient by estimating a patient-specific thoracic pressure force field to drive the biomechanical model. Respiratory motion of the patient is predicted using the personalized biomechanical model driven by the patient-specific thoracic pressure force field.
Abstract:
A cylindrical magnet assembly has at least one coil mounted on a former, assembled to a bore tube by a number of inserts within holes formed in a material of the former. Each insert can bear on a dished radially outer extremity of a radially-outwardly directed protrusion or each insert can bear on a radially outer concave surface of a radially-inwardly directed protrusion.
Abstract:
An assembly comprising has a two-stage cryogenic refrigerator and an associated mounting arrangement, and comprising a sock having first and second stages corresponding to first and second stages of the refrigerator, wherein with the first stage of the refrigerator being in thermal contact with the first stage of the sock and the second stage of the refrigerator being in thermal contact with the second stage of the sock.
Abstract:
In a solenoid magnet assembly, and a method for manufacture thereof, the magnet assembly includes a number of concentrically aligned coils, each including a winding impregnated with a resin. Each coil is mechanically restrained so as to hold the coils in fixed relative positions relative to each other when forming the magnet assembly. The mechanical restraint can be formed by annular support sections bonded to the respective coils, lugs bonded to the respective coils, or by lugs that are at least partially embedded in a crust formed on a radially outer surface of the respective windings.
Abstract:
A cylindrical superconducting magnet system for use in magnetic resonance imaging has axially aligned primary superconducting coils surrounded by a thermal radiation shield within a vacuum vessel. A gradient coil assembly is axially aligned with and located radially within the primary superconducting coils. An assembly support is, radially positioned outside of the primary superconducting coils and is mechanically attached to the gradient coil assembly at a number of locations around the circumference of the gradient coil assembly, and at a number of axial locations along the gradient coil assembly, by radially-directed mechanical attachments that pass though through-holes through the vacuum vessel and the thermal radiation shield, and mechanically isolated from the vacuum vessel. At least some of the mechanical attachments each comprise an active force transducer arranged to provide impulses of force onto a surface of the gradient coil assembly to oppose vibrations of the gradient coil assembly.
Abstract:
An over-pressure limiting arrangement for a cryogen vessel includes an access neck providing access into the cryogen vessel, a tubular structure extending through the access neck, a turret outer assembly joined leak-tight to the cryogen vessel and defining an interior volume that is separated from the atmosphere by a protective valve or burst disc, enclosing an upper extremity of the access neck and the tubular structure. An egress path defines a route for cryogen gas to escape from the turret outer assembly, and a pressure-responsive quench valve seals the egress path and opens when a differential pressure between the interior of the turret outer assembly and the interior of the egress path exceeds a predetermined value. An auxiliary burst disc, or a valve, is attached to the tubular structure within the turret outer assembly, with an inner surface thereof exposed to the interior of the tubular structure and an outer surface thereof exposed to the interior of the turret outer assembly.
Abstract:
In a superconducting magnet apparatus, at least one superconducting winding and an outer vacuum chamber are provided. A thermal radiation shield is located between the superconducting winding and the outer vacuum chamber. A cryogen vessel is positioned within the thermal radiation shield and within the outer vacuum chamber. The superconducting winding is positioned outside of the cryogen vessel. A refrigerator is operable to cool the cryogen vessel to a liquid cryogen temperature and to cool the at least one thermal radiation shield to an intermediate temperature between the liquid cryogen temperature and a temperature of the outer vacuum chamber. A substantial portion of an outer surface of the cryogen vessel has a thermal emissivity at the liquid cryogen temperature which is greater than an average surface emissivity of the superconducting winding by at least 0.1.
Abstract:
In a solenoid magnet assembly, and a method for manufacture thereof, the magnet assembly includes a number of concentrically aligned coils, each including a winding impregnated with a resin. Each coil is mechanically restrained so as to hold the coils in fixed relative positions relative to each other when forming the magnet assembly. The mechanical restraint can be formed by annular support sections bonded to the respective coils, lugs bonded to the respective coils, or by lugs that are at least partially embedded in a crust formed on a radially outer surface of the respective windings.