Abstract:
A setup for assembling, by brazing, a composite panel including at least two parts separated by a filler material and joined together by brazing. The setup includes a furnace to achieve a brazing temperature for brazing the panel, and an assembly device which has a form having a shape similar to the final shape of the panel to be brazed. In particular, the assembly device further includes a pressing device to apply mechanical pressure to at least part of the surface of the panel in a direction allowing the panel to be permanently deformed into a shape which matches that of the form. The pressing device is moved under the action of a spring, and the forces applied by the spring being determined so that, at the brazing temperature, the spring applies the force necessary for deforming the panel against the form.
Abstract:
A fiber preform for constituting the fiber reinforcement of composite material is prepared and then consolidated by depositing sufficient matrix phase therein to bond the fibers together while not completely densifying the preform. Pins of rigid material are put into place through the consolidated preform and densification of the consolidated preform containing the pins is continued by depositing at least a ceramic matrix phase. Thereafter, at least a portion of each pin is eliminated so as to leave a calibrated perforation passing through the resulting part, the pins being made at least in part out of a material that can be eliminated by applying treatment that does not affect the ceramic material of the matrix.
Abstract:
The active cooling panel comprises a first part and a second part of thermostructural composite material, each having an inside face and an opposite outside face, the parts being assembled together by bonding their inside faces together, and channels being formed by indentations formed in the inside face of at least one of the first and second parts. The panel further includes a sealing layer bonded to at least one of the first and second parts and situated at a distance from the assembled-together inside faces thereof. The invention is applicable to making heat exchanger walls such as the walls for the combustion chambers of aircraft engines, or the diverging portions of rocket engines, or plasma confinement chambers in nuclear fusion reactors.
Abstract:
The invention provides a system for passively controlling pressure oscillations of hydrodynamic origin in a solid propellant thruster comprising a body containing a charge of solid propellant, the system comprising at least one insert disposed in the thruster body transversely relative to the flow direction of the combustion gases of the solid propellant. The insert has an opening of non-axisymmetric shape so as to generate a three-dimensional effect on the flow and prevent axisymmetric turbulent modes from forming in the thruster. Thus, the control system of the invention serves to break the symmetry of the flow and thus prevents axisymmetric turbulence forming which is the source of instability that the present invention seeks to control. The present system is applicable to existing thrusters.