Abstract:
The present invention relates to a particle-optical component comprising a first multi-aperture plate, and a second multi-aperture plate forming a gap between them; wherein a plurality of apertures of the first multi-aperture plate is arranged such that each aperture of the plurality of apertures of the first multi-aperture plate is aligned with a corresponding aperture of a plurality of apertures of the second multi-aperture plate; and wherein the gap has a first width at a first location and a second width at a second location and wherein the second width is by at least 5% greater than the first width. In addition, the present invention pertains to charged particle systems and arrangements comprising such components and methods of manufacturing multi aperture plates having a curved surface.
Abstract:
The present invention relates to a particle-optical component comprising a first multi-aperture plate, and a second multi-aperture plate forming a gap between them; wherein a plurality of apertures of the first multi-aperture plate is arranged such that each aperture of the plurality of apertures of the first multi-aperture plate is aligned with a corresponding aperture of a plurality of apertures of the second multi-aperture plate; and wherein the gap has a first width at a first location and a second width at a second location and wherein the second width is by at least 5% greater than the first width. In addition, the present invention pertains to charged particle systems and arrangements comprising such components and methods of manufacturing multi aperture plates having a curved surface.
Abstract:
The invention relates to a manufacturing method for a membrane mask suitable for particle beams with mask fields, which are bounded by thin support walls.The deep plasma etching for the formation of the support walls is halted shortly before reaching the membrane and the last .mu.m before the membrane removed by wet-chemical etching. A high etch selectivity can be achieved using an alkaline etching solution.The support walls 1 are turned by 45.degree. to the (110) direction or oriented parallel to the (100) plane, so that the structures restricted by (111) planes are avoided.
Abstract:
Membrane masks for electron-beam lithography are described which have a high mechanical stability and low membrane thickness, are free of stress and the submicron structures of which are easy to produce using reactive ion etching methods without rounding effects.In the case of a membrane mask for structuring surface areas with the aid of electron or corpuscular beams, a layer 1 of silicon nitride with going right through openings, which define the mask pattern, is deposited on one surface of a semiconductor wafer 2, which consists preferably of silicon. A tub-shaped recess 3 extends from the other surface of the semiconductor wafer 2 as far as the layer-carrying surface.A further mask for structuring surface areas with the aid of electron beams has at least one continuous layer 30 and a layer 31 defining the mask pattern.These two layers are deposited on the surface of a semiconductor wafer 32 with a tub-shaped recess 33.The anisotropic plasma etching method according to the invention makes it possible to transfer lithographically produced patterns to the membrane without the edge rounding which is otherwise usual.