摘要:
The present disclosure is directed towards tracking application layer flow via a multi-connection intermediary. Transaction level or application layer information may be tracked via the intermediary, including one or more of: (i) the request method; (ii) response codes; (iii) URLs; (iv) HTTP cookies; (v) RTT of both ends of the transaction in a quad flow arrangement; (vi) server time to provide first byte of a communication; (vii) server time to provide the last byte of a communication; (viii) flow flags; or any other type and form of transaction level data may be captured, exported, and analyzed. The application layer flow or transaction level information may be provided in an IPFIX-compliant data record. This may be done to provide template-based data record definition, as well as providing data on an application or transaction level of granularity.
摘要:
The virtual Server (vServer) of an intermediary device deployed between a plurality of clients and services supports parameters for setting maximum segment size (MSS) on a per vServer/service basis and for automatically learning the MSS among the back-end services. In case of vServer/service setting, all vServers will use the MSS value set through the parameter for the MSS value set in TCP SYN+ACK to clients. In the case of learning mode, the backend service MSS will be learnt through monitor probing. The vServer will monitor and learn the MSS that is being frequently used by the services. When the learning is active, the intermediary device may keep statistics of the MSS of backend services picked up during load balancing decisions and once an interval timer expires, the MSS value may be picked by a majority and set on the vServer. If there is no majority, then the highest MSS is picked up to be set on the vServer.
摘要:
The present solution is directed to a system for handling network interface card (NIC) congestion by a NIC aware application. The system may include a device having a plurality of network interface cards (NICs), a transmission queue corresponding to a NIC of the plurality of NICs; and an overflow queue for storing packets for the NIC when congested. The system may also include an application executing on the device outputting a plurality of packets to the transmission queue responsive to detecting that the NIC is identified as not congested. The device identifies the NIC as congested responsive to determining that a number of packets stored in the transmission queue has reached a predetermined threshold and responsive to detecting identification of the NIC as congested, the application stores one or more packets to the overflow queue. The device transmits one or more of the plurality of packets stored in the transmission queue and transmits a predetermined number of packets from the overflow queue.
摘要:
Systems and methods for reducing file sizes for files delivered over a network are disclosed. A method comprises receiving a first file comprising sequences of data; creating a hash table having entries corresponding to overlapping sequences of data; receiving a second file comprising sequences of data; comparing each of the sequences of data in the second file to the sequences of data in the hash table to determine sequences of data present in both the first and second files; and creating a third file comprising sequences of data from the second file and representations of locations and lengths of said sequences of data present in both the first and second files.
摘要:
The present invention is directed towards a method and system for modifying by a cache responses from a server that do not identify a dynamically generated object as cacheable to identify the dynamically generated object to a client as cacheable in the response. In some embodiments, such as an embodiment handling HTTP requests and responses for objects, the techniques of the present invention insert an entity tag, or “etag” into the response to provide cache control for objects provided without entity tags and/or cache control information from an originating server. This technique of the present invention provides an increase in cache hit rates by inserting information, such as entity tag and cache control information for an object, in a response to a client to enable the cache to check for a hit in a subsequent request.
摘要:
The present disclosure is directed towards systems and methods for supporting Simple Network Management Protocol (SNMP) request operations over clustered networking devices. The system includes a cluster that includes a plurality of intermediary devices and an SNMP agent executing on a first intermediary device of the plurality of intermediary devices. The SNMP agent receives an SNMP GETNEXT request for an entity. Responsive to receipt of the SNMP GETNEXT request, the SNMP agent requests a next entity from each intermediary device of the plurality of intermediary devices of the cluster. To respond to the SNMP request, the SNMP agent selects a lexicographically minimum entity. The SNMP agent may select the lexicographically minimum entity from a plurality of next entities received via responses from each intermediary device of the plurality of intermediary devices.
摘要:
Systems and methods for consolidating metrics and statistics used for load balancing by a plurality of cores of a multi-core intermediary are disclosed. A timer operating on each packet engine of each core in a multi-core system may expire. A consolidator may store, responsive to expiration of the timer, a set of counter values from each of the packet engines to a first storage location. The consolidator may send to each packet engine a message to update the set of counter values. The consolidator may, upon completion of updating the set of counter values by the packet engines, send a second message to the packet engines that includes a consolidated set of counter values determined based on the updated set of values from each packet engine. Each packet engine may establish settings and parameters for load balancing based on the consolidated set of counter values.
摘要:
The present solution is directed to providing, transparently and seamlessly to any client or server, layer 2 redirection of client requests to any services of a device deployed in parallel to an intermediary device An intermediary device deployed between the client and the server may intercept a client request and check if the request is to be processed by a service provided by one of the devices deployed in parallel with the intermediary device. The service may be any type and form of service or feature for processing, checking or modifying the request, including a firewall, a cache server, a encryption/decryption engine, a security device, an authentication device, an authorization device or any other type and form of service or device described herein. The intermediary device may select the machine to process the request and use layer 2 redirection to the machine. The intermediary device may change a Media Access Control (MAC) address of a destination of the request to a MAC address of the selected machine. Once the selected machine processes the request, the intermediary device may receive from this machine a response to processing the request. The intermediary device may then continue processing the request of the client responsive to the response from the machine or in response to identifying that the response to the request is from that particular selected machine. The forwarding to and processing by the parallel deployed machine may be performed seamlessly and transparently to the server and/or client.
摘要:
The present solution is directed to a system for handling network interface card (NIC) congestion by a NIC aware application. The system may include a device having a plurality of network interface cards (NICs), a transmission queue corresponding to a NIC of the plurality of NICs; and an overflow queue for storing packets for the NIC when congested. The system may also include an application executing on the device outputting a plurality of packets to the transmission queue responsive to detecting that the NIC is identified as not congested. The device identifies the NIC as congested responsive to determining that a number of packets stored in the transmission queue has reached a predetermined threshold and responsive to detecting identification of the NIC as congested, the application stores one or more packets to the overflow queue. The device transmits one or more of the plurality of packets stored in the transmission queue and transmits a predetermined number of packets from the overflow queue.
摘要:
A method for maintaining a cache of dynamically generated objects. The method includes storing in the cache dynamically generated objects previously served from an originating server to a client. A communication between the client and server is intercepted by the cache. The cache parses the communication to identify an object determinant and to determine whether the object determinant indicates whether a change has occurred or will occur in an object at the originating server. The cache marks the object stored in the cache as invalid if the object determinant so indicates. If the object has been marked as invalid, the cache retrieves the object from the originating server.