摘要:
The present solution is directed to providing, transparently and seamlessly to any client or server, layer 2 redirection of client requests to any services of a device deployed in parallel to an intermediary device An intermediary device deployed between the client and the server may intercept a client request and check if the request is to be processed by a service provided by one of the devices deployed in parallel with the intermediary device. The service may be any type and form of service or feature for processing, checking or modifying the request, including a firewall, a cache server, a encryption/decryption engine, a security device, an authentication device, an authorization device or any other type and form of service or device described herein. The intermediary device may select the machine to process the request and use layer 2 redirection to the machine. The intermediary device may change a Media Access Control (MAC) address of a destination of the request to a MAC address of the selected machine. Once the selected machine processes the request, the intermediary device may receive from this machine a response to processing the request. The intermediary device may then continue processing the request of the client responsive to the response from the machine or in response to identifying that the response to the request is from that particular selected machine. The forwarding to and processing by the parallel deployed machine may be performed seamlessly and transparently to the server and/or client.
摘要:
The present solution is directed to providing, transparently and seamlessly to any client or server, layer 2 redirection of client requests to any services of a device deployed in parallel to an intermediary device An intermediary device deployed between the client and the server may intercept a client request and check if the request is to be processed by a service provided by one of the devices deployed in parallel with the intermediary device. The service may be any type and form of service or feature for processing, checking or modifying the request, including a firewall, a cache server, a encryption/decryption engine, a security device, an authentication device, an authorization device or any other type and form of service or device described herein. The intermediary device may select the machine to process the request and use layer 2 redirection to the machine. The intermediary device may change a Media Access Control (MAC) address of a destination of the request to a MAC address of the selected machine. Once the selected machine processes the request, the intermediary device may receive from this machine a response to processing the request. The intermediary device may then continue processing the request of the client responsive to the response from the machine or in response to identifying that the response to the request is from that particular selected machine. The forwarding to and processing by the parallel deployed machine may be performed seamlessly and transparently to the server and/or client.
摘要:
Embodiments of the present solution provide a cloud bridge to bring network transparency between the otherwise disparate networks of the datacenter and cloud service provider. For example, appliances may be deployed in the datacenter and on the edge of the cloud. These appliances may be configured or designed and constructed to communicate with each other and recognize and understand the local IP and/or public IP network information of the on-premise datacenter of the enterprise and the cloud datacenter. These appliances may manage the flow of network traffic between the on-premise and cloud datacenters in a manner to appear and act seamlessly and transparently as a single network spanning both the on-premise and cloud data centers.
摘要:
Embodiments of the present solution provide a cloud bridge to bring network transparency between the otherwise disparate networks of the datacenter and cloud service provider. For example, appliances may be deployed in the datacenter and on the edge of the cloud. These appliances may be configured or designed and constructed to communicate with each other and recognize and understand the local IP and/or public IP network information of the on-premise datacenter of the enterprise and the cloud datacenter. These appliances may manage the flow of network traffic between the on-premise and cloud datacenters in a manner to appear and act seamlessly and transparently as a single network spanning both the on-premise and cloud data centers.
摘要:
The present disclosure presents systems and methods for policy based redirection of network traffic, by an intermediary device, to a horizontally deployed WAN device. An intermediary receives a request from a client to access a server. The request was previously modified by a first WAN device to include information in a first option field of a transport layer. The intermediary may determine, responsive to a redirection policy, to send the request to a second WAN optimization device deployed horizontally from the intermediary, instead of the server. The intermediary transmits the request to the second WAN optimization device, while maintaining the information from the first option field. The intermediary device receives the request including the information in the first option field identifying the first WAN optimization device to the second WAN optimization device. The intermediary receives a modified request from the second WAN device, the modified request determined by the intermediary to be sent to the destination server.
摘要:
The present disclosure presents systems and methods for policy-based redirection of network traffic, by an intermediary device, to a horizontally deployed WAN device. An intermediary receives a request from a client to access a server. The request was previously modified by a first WAN device to include information in an option field of a transport layer. The intermediary may determine, responsive to a redirection policy, to send the request to a second WAN device deployed horizontally from the intermediary, instead of the server. The intermediary transmits the request to the second WAN device, while maintaining the information from the option field. The intermediary device receives the request including the information identifying the first WAN optimization device to the second WAN device. The intermediary receives a modified request from the second WAN device, the modified request determined by the intermediary to be sent to the destination server.
摘要:
The solution of the present application addresses the problem of authentication across disparately hosted systems by providing a single authentication domain across SaaS and cloud hosted applications as well as traditional enterprise hosted applications. An application delivery controller intermediary to a plurality of clients and the disparately hosted applications providing single sign on management, integration and control. A user may log in via an interface provided, controlled or managed by the ADC, which in turns, authenticates the user to the application in accordance with policy and the host of the application. As such, the user may login once to gain access to a plurality of disparately hosted applications. From the user's perspective, the user seamlessly and transparently gains access to different hosted systems with different passwords and authentication via the remote access provided by the system of the present solution
摘要:
In a multi-core system, multiple packet engines across corresponding cores may be working concurrently processing data packets from data flows of SSL VPN sessions. For example, a first core may establish a SSL VPN session with a client. Any one of the other cores, such as a second core, may received packets related to the session owned by the first core. Embodiments of the systems and method described below provide management of IIP addresses for the multi-core/multi-packet engine approach to providing SSL VPN service. In some embodiments, the approach to managing IIP addresses is to have one packet engine on a core act as a master or controller of the IIPs for the remaining packet engines and cores. The packet engines/cores use a protocol for communications regarding IIP management.
摘要:
The present disclosure presents systems and methods for policy-based redirection of network traffic, by an intermediary device, to a horizontally deployed WAN device. An intermediary receives a request from a client to access a server. The request was previously modified by a first WAN device to include information in an option field of a transport layer. The intermediary may determine, responsive to a redirection policy, to send the request to a second WAN device deployed horizontally from the intermediary, instead of the server. The intermediary transmits the request to the second WAN device, while maintaining the information from the option field. The intermediary device receives the request including the information identifying the first WAN optimization device to the second WAN device. The intermediary receives a modified request from the second WAN device, the modified request determined by the intermediary to be sent to the destination server.
摘要:
In a multi-core system, multiple packet engines across corresponding cores may be working concurrently processing data packets from data flows of SSL VPN sessions. For example, a first core may establish a SSL VPN session with a client. Any one of the other cores, such as a second core, may received packets related to the session owned by the first core. Embodiments of the systems and method described below provide management of IIP addresses for the multi-core/multi-packet engine approach to providing SSL VPN service. In some embodiments, the approach to managing IIP addresses is to have one packet engine on a core act as a master or controller of the IIPs for the remaining packet engines and cores. The packet engines/cores use a protocol for communications regarding IIP management.