Abstract:
A system and method is disclosed for synchronizing certain periodic activities and/or processes in a computer system or device. The synchronization allows more efficient use of the computer system's or device's processing capabilities, and may result in conservation of electrical power. In one example embodiment, a periodic scheduler is implemented to periodically verify the continued existence of critical processes operating in the computer system or device. Corrective, or other appropriate, action may be taken in the event of a failure of a critical process. A schedule list, which may be a linked list, may be used to track the periodic processes that are to occur. Upon registration of a critical process, the schedule list may be modified to synchronize the new periodic process with the existing schedule list.
Abstract:
A User Brokered Authorization (UBA) mechanism for policy decisions in a computing device is provided. The authorization mechanism interacts with an authorization layer of the computing device's operating system and enables a determination of whether an authorization decision can be made programmatically or by end user decision based on generalized device policy.
Abstract:
Described is a provisioning system for receiving configuration changes to and queries of settings on a mobile device. One implementation includes a router component and a configuration manager component. The router component is responsible for receiving messages delivered to the mobile device and parsing the messages into requests for information. The router component is also responsible for authenticating and decrypting the messages. Once properly authenticated and decrypted, the router component passes the message to the configuration manager component. The configuration manager component is responsible for determining what configuration settings are affected by the message and for processing the requests within the message. The configuration manager component may additionally compose a response document to return in the event that a response has been requested in the message.
Abstract:
Described is a provisioning system for receiving configuration changes to and queries of settings on a mobile device. One implementation includes a router component and a configuration manager component. The router component is responsible for receiving messages delivered to the mobile device and parsing the messages into requests for information. The messages may be delivered in document format, such as in the eXtensible Markup Language (XML) format. The requests may take the form of a request to respond with existing configuration settings, or to set certain configuration settings on the mobile device. The router component is also responsible for authenticating and decrypting the messages. Once properly authenticated and decrypted, the router component passes the message to the configuration manager component. The configuration manager component is responsible for determining what configuration settings are affected by the message and for processing the requests within the message. For example, the configuration manager component may process a request to query a configuration setting by retrieving the requested information from a hardware register or a software registry. The configuration manager component may implement one or more configuration service providers to perform the actual request processing. The configuration manager component may additionally compose a response document to return in the event that a response has been requested in the message. In one implementation, the response may be created by modifying the original message received and returning that message to the router component.
Abstract:
Increasing the level of automation when establishing and managing network connections. A connection manager operates between system level APIs and application programs, providing a level of abstraction. When a user wishes to access a remote resource included in destination network, the user simply identifies the remote resource and the connection manager performs the underlying operations. The connection manager relieves users from having to know detailed information about the remote resource and the destination network. When the connection manager receives a request to access a remote resource, connection manager may utilize extensible decision logic to identify a most appropriate connection method for connecting to a destination network. Such decision logic may include comparing prioritized connection requests to local resources available in a local computing device, as well as, comparing connection parameters associated with connection methods. The connection manager may utilize connection service provider modules to establish identified connection methods.
Abstract:
A pluggable file-based DRM (digital rights management) API (application program interface) layer for applications and engines. The invention defines a pluggable file-based DRM API layer such that mobile operators can choose to use any file-based DRM (FDRM) engine in their final product. An FDRM engine can be content agnostic (e.g., can range from an executable to a media file or ring-tone). In accordance with the invention, an application can become DRM aware by calling the novel file-based DRM APIs. Any FDRM engine can be plugged into the novel API layer such that applications can use the protected content. The API layer of the subject invention can be designed such that applications that are DRM aware by using the file-based DRM API layer can be DRM engine agnostic.
Abstract:
A system and method is disclosed for synchronizing certain periodic activities and/or processes in a computer system or device. The synchronization allows more efficient use of the computer system's or device's processing capabilities, and may result in conservation of electrical power. In one example embodiment, a periodic scheduler is implemented to periodically verify the continued existence of critical processes operating in the computer system or device. Corrective, or other appropriate, action may be taken in the event of a failure of a critical process. A schedule list, which may be a linked list, may be used to track the periodic processes that are to occur. Upon registration of a critical process, the schedule list may be modified to synchronize the new periodic process with the existing schedule list.
Abstract:
The present invention provides for a virtual serial port (VSP) situated between a serial port in a mobile electronic device, applications that require a serial port connection handle, and other applications that require command-mode access to the serial port. Data-communication applications (e.g. web browsing, e-mail, etc.) connect to the serial port through the VSP. The VSP creates a virtual connection handle that is returned to the application. Command-mode requests (e.g., short messaging requests) are received by the hardware abstraction layer, translated into command-mode messages (e.g., AT commands) and placed in a queue. The VSP multiplexes the serial port between the currently-open data communication session (data-mode) and command-mode messages by periodically suspending the currently-open connection and processing one or more command-mode messages that are in the queue. A buffer continually stores incoming data while the data communication session is suspended. The VSP uses a heuristic calculation to determine the maximum time interval for which the data-communication session can be interrupted. The heuristic calculation takes a percentage of a time-quantum (e.g. 0.5 seconds) based upon the ratio of an average bit rate for air communication (e.g. 7000 bits/sec) and a bit rate for the serial port (e.g. 152,000 bits/sec). This ensures that data-communications are not interrupted for a time interval long enough to result in lost data-packets. The parameter for the time quantum and other parameters may be statically or dynamically adjusted to account for a finite buffer size in the hardware.
Abstract:
Described is a provisioning system for receiving configuration changes to and queries of settings on a mobile device. One implementation includes a router component and a configuration manager component. The router component is responsible for receiving messages delivered to the mobile device and parsing the messages into requests for information. The messages may be delivered in document format, such as in the eXtensible Markup Language (XML) format. The requests may take the form of a request to respond with existing configuration settings. The configuration manager component is responsible for determining what configuration settings are affected by the message and for processing the requests within the message. For example, the configuration manager component may process a request to query a configuration setting by retrieving the requested information from a hardware register or a software registry. The configuration manager component may implement one or more configuration service providers to perform the actual request processing. The configuration manager component may additionally compose a response document to return in the event that a response has been requested in the message. In one implementation, the response may be created by modifying the original message received and returning that message to the router component.
Abstract:
A Radio Interface Layer (RIL) is disclosed. The RIL comprises an API set which provides a level of abstraction between the radio on a cell phone and the software of the cell phone. The API set of RIL is roughly based on the GSM AT interface as defined in GSM specifications 07.05 and 07.07. The API set provides access to functionality contained within a cellular telephone, such as a GSM or CDMA compatible telephone. These APIs allow applications running on an operating system in the cellular telephone to issue commands without knowledge of the underlying radio structure of the cellular telephone and specific knowledge of the GSM-type commands. For example, these APIs allow the applications to access to phonebook entries, restrict access to data and functionality using passwords, access file and message storage, and perform many other functions. The RIL is divided into a hardware-independent proxy layer, called by various software components, and a driver layer that is hardware-specific.