摘要:
An alternator for a vehicle is provided which is equipped with a heat dissipator and a cooling air generator. The heat dissipator is disposed in a rectifier to cool rectifying devices. The cooling air generator generates a flow of cooling air to the heat dissipator. The heat dissipator has a plurality of sub-fins formed thereon. Each of the sub-fins is defined by a combination of a protrusion and a recess. The protrusions are formed on one of opposed major surfaces of the heat dissipator, while the recesses are formed on the other major surface, one in coincidence with each of the protrusions in a thickness-wise direction of the heat dissipator. This permits the heat dissipator to be pressed to form the protrusions and the recesses to make the sub-fins simultaneously, thus allowing a heat-dissipating area to be increased to ensure a desired degree of heat capacity thereof.
摘要:
A process for producing a metal foil-covered semiconductor device. The metal foil material is one which is, in molding a resin for encapsulating a semiconductor element using a mold, temporarily fixed on a surface of a cavity of the mold, and is adhered on a surface of a semiconductor device by injecting the encapsulating resin into the mold and molding the resin, wherein a contact angle of the face of the metal foil material which is in contact with the encapsulating resin during molding, to water is 110.degree. or less.
摘要:
A metal foil material for covering a semiconductor device, a semiconductor device covered with the metal foil material, and a process for producing the metal foil-covered semiconductor device are disclosed. The metal foil material is one which is, in molding a resin for encapsulating a semiconductor element using a mold, temporarily fixed on a surface of a cavity of the mold, and is adhered on a surface of a semiconductor device by injecting the encapsulating resin into the mold and molding the resin, wherein a contact angle of the face of the metal foil material which is in contact with the encapsulating resin during molding, to water is 110.degree. or less.
摘要:
According to the present invention, a rotary electric machine includes a rotor with a rotary shaft, a stator surrounding an outer periphery of the rotor, and a frame supporting the rotor and the stator. Further, the stator has an outer surface at least part of which is exposed to outside of the frame, and a plurality of protrusions and recesses are formed on the exposed part of the outer surface of the stator, so as to enhance dissipation of heat generated by operation of the rotary electric machine. According to a further implementation of the present invention, the rotor includes at least one fan that works to create air flow, and the protrusions and the recesses are so formed that the recesses make up air flow paths, along which the air flow created by the fan passes over the outer surface of the stator, thereby cooling the outer surface.
摘要:
According to the present invention, a rotary electric machine includes a rotor with a rotary shaft, a stator surrounding an outer periphery of the rotor, and a frame supporting the rotor and the stator. Further, the stator has an outer surface at least part of which is exposed to outside of the frame, and a plurality of protrusions and recesses are formed on the exposed part of the outer surface of the stator, so as to enhance dissipation of heat generated by operation of the rotary electric machine. According to a further implementation of the present invention, the rotor includes at least one fan that works to create air flow, and the protrusions and the recesses are so formed that the recesses make up air flow paths, along which the air flow created by the fan passes over the outer surface of the stator, thereby cooling the outer surface.
摘要:
An alternator for a vehicle is provided which is equipped with a heat dissipator and a cooling air generator. The heat dissipator is disposed in a rectifier to cool rectifying devices. The cooling air generator generates a flow of cooling air to the heat dissipator. The heat dissipator has a plurality of sub-fins formed thereon. Each of the sub-fins is defined by a combination of a protrusion and a recess. The protrusions are formed on one of opposed major surfaces of the heat dissipator, while the recesses are formed on the other major surface, one in coincidence with each of the protrusions in a thickness-wise direction of the heat dissipator. This permits the heat dissipator to be pressed to form the protrusions and the recesses to make the sub-fins simultaneously, thus allowing a heat-dissipating area to be increased to ensure a desired degree of heat capacity thereof.