Abstract:
Provided are a method and apparatus for driving a PDP for widening a driving margin and improving contrast. The method for driving a PDP includes a first step of forming wall charges in cells with a set-up discharge using a set-up signal in a first sub-field and erasing the wall charges with a set-down discharge using a first set-down signal to initialize the cells, and a second step of erasing the wall charges with a set-down discharge generated using a second set-down signal different from the first set-down signal in a second sub-field, to initialize the cells. The method and apparatus for driving a PDP uniformly initialize sub-fields to widen the driving margin of PDP and remove a set-up discharge in at least one sub-field to improve the contrast of PDP.
Abstract:
A method and apparatus for expressing a gray level with a decimal value in a plasma display panel that is capable of enhancing a picture quality. In the method and apparatus, a sustaining pulse is applied only to any one electrode of a sustaining electrode pair to thereby express a gray level with a decimal value.
Abstract:
An actuator used for a camera module and controlling a lens assembly to move along an optical axis, includes a magnet disposed on a side of the lens assembly, a coil part disposed within a magnetic field of the magnet and controlling an up-and-down movement of the lens assembly when an electric power is applied, and a yoke part disposed to horizontally move the magnet disposed on the side of the lens assembly. The lens assembly is provided with a friction-generating member generating a frictional force to the lens assembly in an opposite direction to a direction in which the lens assembly moves to the yoke part.
Abstract:
A method of driving a plasma display panel that is adaptive for improving a picture quality. In the method, first and second sustain pulses having a different width during the sustain period are alternately applied to the first and second row electrodes.
Abstract:
A method of driving a plasma display panel (PDP) and a plasma display device using the same are provided. In the plasma display device, a plurality of scan electrodes formed on the PDP are divided into first and second groups to supply scan signals. When a scan bias voltage is higher in a first subfield in first and second subfields, lowermost voltages of reset signals are higher in the second subfield. According to the plasma display device, when the plurality of scan electrodes are divided into at least two groups to be driven, the lowermost voltages of the reset signals are controlled in accordance with a scan bias voltage so that it is possible to reduce address erroneous discharge in accordance with the loss of wall charges, to prevent the generation of brilliant points, and to improve the picture quality of a displayed image.
Abstract:
The present invention relates to a plasma display apparatus and a method of driving the same. The plasma display apparatus according to the present invention includes a plasma display panel in which data electrodes are formed; and a data voltage controller for applying a data voltage as a floating state or a first state voltage to the data electrodes. The method of driving a plasma display apparatus according to the present invention includes the steps of: (a) applying a first voltage to the data electrodes; and (b) applying a voltage as a ground level or a floating state to the data electrodes.
Abstract:
The present invention relates to an apparatus and method for driving a plasma display panel, and more particularly, to a scan drive apparatus and method of a plasma display panel. The present invention includes a data conversion unit converting video data to converted video data suitable for the PDP, a subfield mapping unit mapping a subfield corresponding to the converted video data, a data comparison unit computing a size of a displacement current by comparing video data of a cell bundle including at least one cell situated on a specific scan line to video data of a cell bundle situated in vertical and horizontal directions of the cell bundle according to each scan type of a plurality of scan types, and a scan sequence decision unit deciding a scan sequence according to the scan type having a small displacement current inputted from the data comparison unit.
Abstract:
The present invention relates to a plasma display panel, and more particularly, to a method and an apparatus for driving a plasma display panel. According to one aspect of the present invention, there is provided a method of driving a plasma display panel, including the steps of selecting an operating mode based on the degree in which a data moves, and controlling differently at least one of an arrangement of sub-fields disposed within one frame period and the number of sustain pulses according to the selected operating mode. According to the method and apparatus of driving the plasma display panel of the present invention, it is thus possible to increase the picture quality when displaying data of different media such as a PC data or a TV data, power consumption can be reduced, and it is possible to extend the lifespan of a plasma display panel.
Abstract:
Disclosed is a camera module with a hinge spring which can stably support a lens barrel which is driven in a vertical direction for automatic focusing and which is made of lightweight resin, the camera module including a cylindrical lens barrel with lenses disposed therein for collecting images of external objects, a housing encasing the lens barrel in a manner such that the lens barrel vertically moves in an optical axis direction of the lenses, an automatic focusing actuator installed in the housing to cause linear motion of the lens barrel in the optical axis direction, and a ring-shaped hinge spring extrusion-molded using resin having elasticity to support an upper portion of the lens barrel and guide the linear motion of the lens barrel.
Abstract:
The present invention relates to a plasma display panel, and more particularly, to a plasma display apparatus and a method of driving a plasma display panel including address electrodes (X) and scan electrodes (Y). The plasma display apparatus according to the present invention includes a plasma display panel including a plurality of scan electrodes and a plurality of address electrodes formed to cross the scan electrodes; a driving unit for driving the plurality of address electrodes; and a driving pulse controller for controlling the driving unit so that a voltage falling time of a data pulse supplied to one and more address electrode groups among a plurality of address electrode groups including one or more address electrodes in an address period ranges from no less than 50 ns to no more than 300 ns. According to The present invention, electric potential of the data pulse varies slowly by prolonging a voltage falling time of a data pulse compared with a conventional voltage falling time so that the peak value of a displacement current becomes reduced. Accordingly, an EMI (ElectroMagnetic Interference) property is enhanced, thereby ensuring normal operations of a driving apparatus of a plasma display panel.