Abstract:
A method of driving a plasma display panel that is adaptive for improving a picture quality. In the method, first and second sustain pulses having a different width during the sustain period are alternately applied to the first and second row electrodes.
Abstract:
A method of driving a plasma display panel that is adaptive for improving a picture quality. In the method, first and second sustain pulses having a different width during the sustain period are alternately applied to the first and second row electrodes.
Abstract:
A method and apparatus for driving a plasma display panel that is adaptive for improving a sustain driving margin. In the method and apparatus, the number of sustaining pulses is set in response to an average picture level. A period of the sustaining pulse is set in proportion to said average picture level.
Abstract:
A method and apparatus of driving a plasma display panel that is adaptive for making a stable operation at both a low temperature and a high temperature. In the apparatus, a scan driver applies a first sustaining pulse to a scan electrode during a sustain period. A sustain driver applies a second sustaining pulse alternating with said first sustaining pulse to a common sustain electrode during said sustain period. A sustain voltage source supplies a driving voltage to the scan driver and the sustain driver such that the first and second sustaining pulses can be applied. A controller controls a voltage value of said driving voltage in correspondence with a driving temperature at which the panel is driven.
Abstract:
An erasing method and apparatus for a plasma display panel that is capable of minimizing spurious wall charges left after an erasing discharge. In the erasing method, an erasing signal taking a ramp waveform shape is applied to any one of first and second electrodes for alternately causing a sustain discharge. A voltage of said erasing signal is sustained at a voltage upon erasing discharge after the erasing discharge caused by said erasing signal.
Abstract:
A method and apparatus of driving a plasma display panel that is adaptive for making a stable operation at both a low temperature and a high temperature. In the apparatus, a scan driver supplies a rising ramp waveform in a set-up interval and a falling ramp waveform in a set-down interval. A temperature sensor senses a driving temperature of the panel to generate a bit control signal. A set-down control signal generator generates a control signal such that an application time of the falling ramp waveform can be controlled in correspondence with said bit control signal and for applying the control signal to the scan driver.
Abstract:
A method and apparatus of driving a plasma display panel that is adaptive for making a stable operation at both a low temperature and a high temperature. In the apparatus, a scan driver applies a first sustaining pulse to a scan electrode during a sustain period. A sustain driver applies a second sustaining pulse alternating with the first sustaining pulse to a common sustain electrode during the sustain period. A sustain voltage source supplies a driving voltage to the scan driver and the sustain driver such that the first and second sustaining pulses can be applied. A controller controls a voltage value of the driving voltage in correspondence with a driving temperature at which the panel is driven.
Abstract:
A method and apparatus of driving a plasma display panel for making a stable operation at both a low temperature and a high temperature is disclosed. In the apparatus, a temperature sensor senses a temperature of the plasma display panel. A set-down controller differently controls a voltage for causing a set-down discharge depending upon a temperature of the plasma display panel.
Abstract:
This invention relates to a driving apparatus of a plasma display panel that is capable of being operated stable, regardless of temperature. A driving apparatus of a plasma display panel according to the present invention includes a panel having a scanning electrode for receiving a scanning pulse in an address period and an address electrode for receiving a date pulse synchronized with the scanning pulse in the address period; and a pulse width controller for changing the width of the scanning pulse when the panel is driven at a low temperature.
Abstract:
The present invention relates to a plasma display apparatus and, more particularly, to a method of driving a plasma display panel. The plasma display apparatus includes a plasma display panel including a plurality of scan electrodes and sustain electrodes formed on an upper substrate, and a plurality of address electrodes formed on a lower substrate, and a driver for supplying driving signals to the plurality of electrodes. The plurality of scan electrodes are divided into first and second groups and then supplied with scan signals, and scan bias voltages supplied to the first and second groups in at least any one period of an address period are different from each other. In at least one of a plurality of subfields constituting one frame, a width of a first sustain signal of a plurality of sustain signals supplied during a sustain period is larger than a width of each of the remaining sustain signals.