摘要:
An organic light emitting display device may include: a substrate having first, second and third pixel regions. A first electrode layer may be formed in each of the first, second and third pixel regions on the substrate. A hole injection layer may be formed over an entire surface of the substrate on the first electrode layers. A first hole transport layer may be formed on the first electrode layers in the first, second and third pixel region. A second hole transport layer may be formed on the first hole transport layer in any two adjacent pixel regions among the first, second and third pixel regions. A third hole transport layer may be formed on the second hole transport layer in any one of the two adjacent pixel region. A first, second and third organic emission layers may be formed on the first, second and third hole transport layer. A second electrode layer may be formed on the first, second and third organic emission layers. An OLED configured in this or a similar manner benefits from uniform operating characteristics and reducing tac time.
摘要:
An organic electroluminescence device, and a method of manufacturing the same, where the device includes a substrate, a first electrode formed on the substrate, an organic layer formed on the first electrode and including at least an organic light-emitting layer, and a second electrode formed on the organic layer. The second electrode is made of an Mg—Ag layer having a thickness in a range of 170 Å to 200 Å.
摘要:
The present invention discloses organic electroluminescent display device and a method for fabricating the same, which includes: a first hole transporting layer formed in the first, second, and third pixel regions; a second hole transporting layer formed on a portion of the first hole transporting layer in the second and third pixel regions; a third hole transporting layer formed on a portion of the second hole transporting layer in the third pixel region. Light emitting layers are formed on each of the first, second, and third hole transporting layers. The thickness of the second hole transporting layer is approximately one-third (⅓) to two-thirds (⅔) of an optical wavelength difference between the first and second pixel regions, and the thickness of the third hole transporting layer is approximately one-third (⅓) to two-thirds (⅔) of an optical wavelength difference between the second and third pixel regions.
摘要:
An organic light emitting diode (OLED) display and a method for fabricating the same. The OLED display includes: a substrate; a first electrode formed on the substrate and including a reflecting layer; an organic layer formed on the first electrode and including at least an organic emission layer; a second electrode formed on the organic layer; and an organic capping layer formed on the second electrode. The organic capping layer is formed by stacking an organic material having a refractive index of 1.7 or more, thereby providing a high-efficiency and long-life top-emitting OLED display.
摘要:
A heating crucible and a deposition apparatus are provided that have a uniform deposition rate and good reproducibility. The heating crucible of the deposition apparatus includes a titanium body with an internal cavity to contain a material to be deposited and an opening to emit the material to be deposited, a wire to heat the body, and an insulator to insulate the body from the wire.
摘要:
An organic light emitting device is disclosed. In one embodiment, the organic light emitting device includes red (R), green (G) and blue (B) lower electrodes formed on a substrate. R, G, B organic thin film layers are formed on the R, G, B lower electrodes, respectively. Additionally, an upper single or multilayer electrode is formed over the substrate. Portions of the upper electrode that correspond to the R, G, B organic thin film layers, respectively, are formed to each have a different thickness. Various methods for forming the upper electrode using a fine metal mask, a halftone mask, and single and multiple photolithography processes are also disclosed.
摘要:
An organic light emitting device is disclosed. In one embodiment, the organic light emitting device includes red (R), green (G) and blue (B) lower electrodes formed on a substrate. R, G, B organic thin film layers are formed on the R, G, B lower electrodes, respectively. Additionally, an upper single or multilayer electrode is formed over the substrate. Portions of the upper electrode that correspond to the R, G, B organic thin film layers, respectively, are formed to each have a different thickness. Various methods for forming the upper electrode using a fine metal mask, a halftone mask, and single and multiple photolithography processes are also disclosed.
摘要:
An organic light emitting display and a method of fabricating the same are provided. The organic light emitting display includes a pixel electrode, an organic layer including at least an emission layer, and an opposite electrode. An electron injection layer interposed between the emission layer and the opposite layer may be formed of an optimal thickness of NaF layer to reduce the thickness of the electron injection layer.
摘要:
An organic electroluminescent display comprises: anode electrodes of R, G and B unit pixels formed separate from each other on a substrate; organic thin-film layers of the R, G and B unit pixels formed on the anode electrodes; and a cathode electrode formed over an entire surface of the substrate. The anode electrode of at least one unit pixel, among the R, G and B unit pixels, has a thickness different from anode electrodes of the other unit pixels. The anode electrode of each of the unit pixels comprises a first film having a high reflectivity and a second film for adjusting a work function. The second film of at least one unit pixel, among the unit pixels, has a thickness different from the second films of the other unit pixels. The second film of the R unit pixel is thicker than the second films of the other unit pixels.
摘要:
A display device, and a mobile display using the same, that may regulate a ratio of luminance in a lower direction to luminance in an upper direction. The display device has a transparent lower electrode formed on an insulation substrate, an organic emitting layer formed on the lower electrode, and an upper electrode formed on the organic emitting layer, where the upper electrode is comprised of a semi-transparent metal layer and a transparent conductive layer. The ratio of the luminance in the lower direction to the luminance in the upper direction is different according to a thickness of the semi-transparent metal layer.