摘要:
The invention relates to an unmanned air vehicle control system and method, designed such that, in one mission mode, the vehicle follows the mission route. The system comprises means (400, 450) for storing data indicating at least one auxiliary route (4000, 4001, 4002, 4003), such that each of a plurality of the mission route segments (10, 20), is assigned at least part (30, 31, 32, 33) of at least one auxiliary route. Furthermore, the system comprises route change means (53) designed for, as a response to a mission abandonment event (52), determining which part of which auxiliary route is assigned to the mission route segment where the vehicle is located, such that the vehicle can change the mission route to the corresponding auxiliary route.
摘要:
According to the method of the invention, control parameters V indicating speed, R indicating turn characteristics and γ indicating a path angle are determined such that these parameters are maintained between limits, and such that one of them deviates as little as possible from a corresponding control input parameter Ri. In order to maintain (as much as possible) the value of R unchanged, V can be varied. The method may include the calculation of the maximum and minimum thrust available.
摘要:
According to the method of the invention, control parameters V indicating speed, R indicating turn characteristics and γ indicating a path angle are determined such that these parameters are maintained between limits, and such that one of them deviates as little as possible from a corresponding control input parameter Ri. In order to maintain (as much as possible) the value of R unchanged, V can be varied. The method may include the calculation of the maximum and minimum thrust available.
摘要:
The invention relates to an unmanned air vehicle control system and method, designed such that, in one mission mode, the vehicle follows the mission route. The system comprises means (400, 450) for storing data indicating at least one auxiliary route (4000, 4001, 4002, 4003), such that each of a plurality of the mission route segments (10, 20), is assigned at least part (30, 31, 32, 33) of at least one auxiliary route. Furthermore, the system comprises route change means (53) designed for, as a response to a mission abandonment event (52), determining which part of which auxiliary route is assigned to the mission route segment where the vehicle is located, such that the vehicle can change the mission route to the corresponding auxiliary route.