摘要:
A photoactivated antimicrobial wound dressing comprising a photocatalytic membrane is provided. The photocatalytic membrane comprises a bacterial cellulose hydrogel membrane having photocatalytic particles are immobilized within the membrane and are activated when exposed to light, at which time they react with oxygen-based species forming reactive oxygen species. The reactive oxygen species further react with microbes to kill the microbes.
摘要:
Improvements in the production of high-performance latching magneto-optic garnet materials are provided. It has been recognized that high-Europium magneto-optic garnets will offer superior properties in devices such as isolators, circulators and interleavers. However, formation of, e.g., (BiEu)3(FeGa)5O12 on conventional, congruent composition, garnet substrates is difficult, due to poor lattice matching between the magneto-optic garnet and such conventional substrates. The invention addresses this problem, by utilizing a single crystal substrate composed essentially of a solid solution of two or more garnet materials. By use of a solid solution of two or more garnets, e.g., two congruent garnet compositions, an acceptable lattice parameter is able to be attained. Useful solid solutions include gadolinium scandium gallium garnet and gadolinium scandium aluminum garnet, or gadolinium scandium gallium garnet and terbium scandium gallium garnet.
摘要翻译:提供高性能闭锁磁光石榴石材料的生产改进。 已经认识到,高铕磁光石榴石将在诸如隔离器,循环器和交织器的装置中提供优异的性能。 然而,由于磁光石榴石和这种常规基板之间的格子匹配不良,难以形成例如(BiEu)3(FeGa)5 O 12的传统的等效组合物石榴石基材。 本发明通过利用主要由两种或多种石榴石材料的固溶体组成的单晶基板来解决这个问题。 通过使用两个或更多个石榴石的固溶体,例如两个一致的石榴石组合物,可以获得可接受的晶格参数。 有用的固体溶液包括钆镓镓石榴石和钆矾铝石榴石,或钆镓石榴石和铽镓石榴石。
摘要:
Silicon nanosponge particles prepared from a metallurgical grade silicon powder having an initial particle size ranging from about 1 micron to about 4 microns is presented. Each silicon nanosponge particle has a structure comprising a plurality of nanocrystals with pores disposed between the nanocrystals and throughout the entire nanosponge particle.
摘要:
A shaped, flexible fuel and energetic system is presented. The shaped, flexible fuel comprises at least one polymeric binding material and porous silicon particles dispersed throughout the polymeric binding material. The porous silicon particles are prepared from a metallurgical grade silicon powder. The shaped, flexible fuel preferably includes shapes such as: an article, a film, a wire and a tape. The energetic system comprises the shaped, flexible fuel portion used alone or in combination with at least one oxidizer.
摘要:
Porous silicon particles are prepared from a metallurgical grade silicon powder having an initial particle size greater than about 1 micron is presented. Each porous silicon particle comprises a solid core surrounded by a porous silicon layer having a thickness greater than about 0.5 microns.
摘要:
Silicon nanosponge particles prepared from a metallurgical grade silicon powder having an initial particle size ranging from about 1 micron to about 4 microns is presented. Each silicon nanosponge particle has a structure comprising a plurality of nanocrystals with pores disposed between the nanocrystals and throughout the entire nanosponge particle.
摘要:
A thermal battery including: a casing; a thermal battery cell disposed in the casing and operatively connected to electrical connections exposed from the casing; a fuel and oxidizer mixture disposed at least partially between the casing and the battery cell; and one or more initiators for initiating one or more of the thermal battery cell and the fuel and oxidizer mixture; wherein the fuel and oxidizer mixture produces an exothermic reaction upon initiation and forms a reaction product being a thermal insulator.
摘要:
A shaped, flexible fuel and energetic system is presented. The shaped, flexible fuel comprises at least one polymeric binding material and porous silicon particles dispersed throughout the polymeric binding material. The porous silicon particles are prepared from a metallurgical grade silicon powder. The shaped, flexible fuel preferably includes shapes such as: an article, a film, a wire and a tape. The energetic system comprises the shaped, flexible fuel portion used alone or in combination with at least one oxidizer.
摘要:
A process for producing a silicon nitride compound is presented. A starting solution comprising fluorosilicic acid is provided. The starting solution is derived from a silicon, etching process wherein silicon is etched with a solution comprising hydrofluoric acid and where silicon powder has been removed. The starting solution is heated to yield a vapor solution comprising silicon tetrafluoride, hydrogen fluoride, and water. The hydrogen fluoride is separated from the vapor solution wherein a pure stream of silicon tetrafluoride and water vapor remain. The silicon tetrafluoride and water vapor are hydrolyzed to yield a concentrated fluorosilicic acid solution. The fluorosilicic acid is reacted with a base to yield a fluorosilicic salt. The fluorosilicic salt is heated to yield anhydrous silicon tetrafluoride. The anhydrous silicon tetrafluoride is reacted with a metal hydride to yield a monosilane. The monosilane is reacted to form a silicon compound and a silicon nitride compound. The silicon and the silicon nitride compounds are recovered. In an alternate embodiment, the hydrogen fluoride is recovered from the reaction process and reintroduced into the porous silicon etching process.
摘要:
A process for producing a silicon nitride compound is presented. A starting solution comprising fluorosilicic acid is provided. The starting solution is derived from a silicon, etching process wherein silicon is etched with a solution comprising hydrofluoric acid and where silicon powder has been removed. The starting solution is heated to yield a vapor solution comprising silicon tetrafluoride, hydrogen fluoride, and water. The hydrogen fluoride is separated from the vapor solution wherein a pure stream of silicon tetrafluoride and water vapor remain. The silicon tetrafluoride and water vapor are hydrolyzed to yield a concentrated fluorosilicic acid solution. The fluorosilicic acid is reacted with a base to yield a fluorosilicic salt. The fluorosilicic salt is heated to yield anhydrous silicon tetrafluoride. The anhydrous silicon tetrafluoride is reacted with a metal hydride to yield a monosilane. The monosilane is reacted to form a silicon compound and a silicon nitride compound. The silicon and the silicon nitride compounds are recovered. In an alternate embodiment, the hydrogen fluoride is recovered from the reaction process and reintroduced into the porous silicon etching process.