摘要:
An optical multilayer film and reflective screen are provided. An optical multilayer film includes an optical laminate A including a plurality of types of optical layers having different refractive indices laminated on each other, the optical laminate A having a reflection characteristic in which the reflectance peak intensities in the red, green, and blue wavelength regions are substantially the same; and an optical laminate B including a plurality of types of optical layers having different refractive indices laminated on each other, the optical laminate B having a reflection characteristic in which the bottom of the reflectance curve lies in the green wavelength region.
摘要:
A screen for image display apparatus according to the present invention has a base member, a light absorption layer formed on the base member and adapted for absorbing light of a visible light range, and a light control layer formed on the light absorption layer. The light control layer reflects projected image display light to form an image and has a reflection wavelength selection function of selectively reflecting light of the wavelength range of the image display light. By using the screen for image display apparatus according to the present invention, a user can easily enjoy large-screen image display even in a bright environment.
摘要:
An optical multilayer film and reflective screen are provided. An optical multilayer film includes an optical laminate A including a plurality of types of optical layers having different refractive indices laminated on each other, the optical laminate A having a reflection characteristic in which the reflectance peak intensities in the red, green, and blue wavelength regions are substantially the same; and an optical laminate B including a plurality of types of optical layers having different refractive indices laminated on each other, the optical laminate B having a reflection characteristic in which the bottom of the reflectance curve lies in the green wavelength region.
摘要:
An optical multilayer film and reflective screen are provided. An optical multilayer film includes an optical laminate A including a plurality of types of optical layers having different refractive indices laminated on each other, the optical laminate A having a reflection characteristic in which the reflectance peak intensities in the red, green, and blue wavelength regions are substantially the same; and an optical laminate B including a plurality of types of optical layers having different refractive indices laminated on each other, the optical laminate B having a reflection characteristic in which the bottom of the reflectance curve lies in the green wavelength region.
摘要:
A method and an appartus for a liquid crystal display (LCD) having an input function are provided. A first transistor is provided in each of the pixel cells of a pixel cell array of a LCD. This first transistor, or display transistor, is a thin film transistor (TFT) switch that is coupled to a transparent electrode that controls the display of pixels on the LCD. Moreover, a second transistor is provided in each of the pixel cells of the pixel cell array. This second transistor is a TFT switch that forms part of a metal-oxide semiconductor (MOS) image sensor array including a photo diode and a micro lens. The second transistor causes an input to be sensed by the LCD. The inputs sensed by the LCD include image inputs and inputs from a pen and a human touch. The first and second transistors are fabricated on the same side of the same substrate.
摘要:
There is disclosed a method for producing an electro-optical device applied as image display device. This method comprises the steps of forming a plurality of channels on a major surface of a first substrate, each of the channels being substantially in parallel to each other; forming first electrodes in each channel; filling the channels with a material so as to flatten the major surface of the first substrate; depositing a dielectric layer on the flattened surface of the first substrate; removing the filled material from the channels; and combining the first substrate with second substrate, the second substrate having a plurality of second electrodes substantially perpendicular to the channels in an inner surface of the first substrate, and an electro-optical material layer interposed between the dielectric layer and the second substrate. An employment of this producing method results in no restriction in the thickness or dimension of a dielectric sheet, thus making it possible to provide an image display device free from the problem of unevenness in thickness thereof.