Seam-based reduction and expansion of images with color-weighted priority
    1.
    发明授权
    Seam-based reduction and expansion of images with color-weighted priority 有权
    具有颜色加权优先权的基于接缝的缩小和扩展图像

    公开(公告)号:US08290300B2

    公开(公告)日:2012-10-16

    申请号:US12184060

    申请日:2008-07-31

    IPC分类号: G06K9/32

    摘要: A system and method for expansion and reduction of images uses an absolute value associated with each pixel of an input image (e.g., a color and/or intensity value) to determine a respective energy value for each pixel. For example, a given color or range of colors (e.g., skin tones, or other high-priority colors) may be assigned higher energy values than other colors and/or color ranges, and may be protected during image reduction and/or expansion. These energy values may be used to determine a cost associated with various seams of the image, which may represent the priority of the seams in the image. One or more low-cost seams may be identified for removal or replication to produce a resized image. The methods may be used in conjunction with an automated skin tone detector or a user interface that allows selection of one or more high priority colors or color ranges.

    摘要翻译: 用于扩展和缩小图像的系统和方法使用与输入图像的每个像素(例如,颜色和/或强度值)相关联的绝对值来确定每个像素的相应能量值。 例如,给定的颜色或范围的颜色(例如,肤色或其他高优先级颜色)可被赋予比其他颜色和/或颜色范围更高的能量值,并且可以在图像缩小和/或扩展期间被保护。 这些能量值可以用于确定与图像的各种接缝相关联的成本,其可以表示图像中的接缝的优先级。 可以识别一个或多个低成本接缝用于去除或复制以产生调整大小的图像。 所述方法可以与允许选择一个或多个高优先级颜色或颜色范围的自动肤色检测器或用户界面结合使用。

    Seam-based reduction and expansion of images with table-based priority
    2.
    发明授权
    Seam-based reduction and expansion of images with table-based priority 有权
    基于接缝的减少和扩展具有基于表格优先权的图像

    公开(公告)号:US08280186B1

    公开(公告)日:2012-10-02

    申请号:US12184039

    申请日:2008-07-31

    IPC分类号: G06K9/32

    CPC分类号: G06T3/0012

    摘要: A system and method for expansion and reduction of images uses a look-up table to define an arbitrary mapping of data (e.g., pixel values) representing an image to respective energy values. Each pixel value may represent an absolute color or intensity value, a difference in color or intensity values, or an average, derivative, minimum, or maximum of two or more pixel values. The energy values may then be used to determine one or more low-cost seams of the image to be removed for an image reduction operation or replicated for an image expansion operation, where the cost of each seam is dependent on the energy values of the pixels of the seam. The look-up table may be used to apply a threshold and/or cap on the energy values mapped to pixel values. The look-up table may also provide a mechanism for reconfiguring mappings, thresholds, and/or caps.

    摘要翻译: 用于扩展和缩小图像的系统和方法使用查找表来将表示图像的数据(例如,像素值)的任意映射定义为各自的能量值。 每个像素值可以表示绝对颜色或强度值,颜色或强度值的差异,或两个或多个像素值的平均,导数,最小值或最大值。 然后可以使用能量值来确定用于图像缩小操作要被去除的图像的一个或多个低成本接缝,或者用于图像展开操作的复制,其中每个接缝的成本取决于像素的能量值 的接缝。 查找表可以用于对映射到像素值的能量值应用阈值和/或上限。 查找表还可以提供用于重新配置映射,阈值和/或上限的机制。

    Non-linear image scaling with seam energy
    3.
    发明授权
    Non-linear image scaling with seam energy 有权
    具有接缝能量的非线性图像缩放

    公开(公告)号:US08218900B1

    公开(公告)日:2012-07-10

    申请号:US12183974

    申请日:2008-07-31

    IPC分类号: G06K9/20

    CPC分类号: G06T3/0012

    摘要: A system and method for expansion and reduction of images uses a hybrid resizing technique that combines seam carving and image scaling techniques to reduce or expand an image. Seam carving techniques may be used to identify one or more low-cost seams of an input image, and these low-cost seams may be scaled up or down to expand or reduce the overall input image and produce a resized image. A different scaling factor may be applied to different ones of the low-cost seams, dependent on the average or total energy value of each of the seams. The scaling factor applied to each seam may be dependent on the number of low-cost seams identified for scaling, which may be configurable by a user. A configurable look-up table may map seam costs to scaling factors, and may be accessed to determine a respective scaling factor to be applied to each identified seam.

    摘要翻译: 用于扩展和缩小图像的系统和方法使用混合尺寸调整技术,其结合了缝合雕刻和图像缩放技术来减少或展开图像。 可以使用接缝雕刻技术来识别输入图像的一个或多个低成本接缝,并且可以将这些低成本接缝放大或缩小,以扩大或缩小整个输入图像并产生调整大小的图像。 取决于每个接缝的平均或总能量值,可以将不同的缩放因子应用于不同的低成本接缝。 应用于每个接缝的缩放因子可以取决于识别用于缩放的低成本接缝的数量,其可以由用户配置。 可配置的查找表可以将接缝成本映射到缩放因子,并且可以被访问以确定要应用于每个识别的接缝的各自的缩放因子。

    System and method for tracking objects with a synthetic aperture
    4.
    发明授权
    System and method for tracking objects with a synthetic aperture 有权
    用合成孔径跟踪物体的系统和方法

    公开(公告)号:US07929804B2

    公开(公告)日:2011-04-19

    申请号:US11866645

    申请日:2007-10-03

    IPC分类号: G06K9/32

    摘要: A computer implemented method tracks 3D positions of an object moving in a scene. A sequence of images is acquired of the scene with a set of cameras such that each time instant a set of images are acquired of the scene, in which each image includes pixels. Each set of images is aggregated into a synthetic aperture image including the pixels, and the pixels in each the set of images are matched corresponding to multiple locations and multiple depths of a target window with an appearance model to determine scores for the multiple locations and multiple depths. A particular location and a particular depth having a maximal score is selected as the 3D position of the moving object.

    摘要翻译: 计算机实现的方法跟踪在场景中移动的对象的3D位置。 利用一组摄像机获取场景序列,使得每个时间瞬间获取场景的一组图像,其中每个图像包括像素。 每组图像被聚合成包括像素的合成孔径图像,并且每个图像集合中的像素对应于具有外观模型的目标窗口的多个位置和多个深度来匹配,以确定多个位置和多个位置的分数 深度。 选择具有最大分数的特定位置和特定深度作为移动物体的3D位置。

    Method for classifying private data using secure classifiers
    5.
    发明授权
    Method for classifying private data using secure classifiers 有权
    使用安全分类器对私有数据进行分类的方法

    公开(公告)号:US07685115B2

    公开(公告)日:2010-03-23

    申请号:US11490782

    申请日:2006-07-21

    IPC分类号: G06F17/00

    摘要: A computer implemented method classifies securely a private query sample using exact k-nn classification. A secure dot product protocol is applied to determine securely distances between a private query sample and a plurality of private labeled samples. A secure k-rank protocol is applied to the distances to determine a nearest distance of a kth nearest labeled sample having a particular label. Then, a secure Parzen protocol is applied to the nearest distance to label the private query sample according to the particular label.

    摘要翻译: 计算机实现的方法使用精确的k-nn分类安全地分类私人查询样本。 应用安全点产品协议来确定私人查询样本和多个私有标签样本之间的安全距离。 将一个安全的k-rank协议应用于距离,以确定具有特定标签的第k个最近标记样本的最近距离。 然后,将安全的Parzen协议应用于最近的距离,以根据特定标签标记私有查询样本。

    Method for classifying private information securely
    6.
    发明授权
    Method for classifying private information securely 有权
    安全地分类私人信息的方法

    公开(公告)号:US07657028B2

    公开(公告)日:2010-02-02

    申请号:US11246764

    申请日:2005-10-07

    IPC分类号: H04L9/00

    CPC分类号: H04L9/3093

    摘要: A method for securely classifying private data x of a first party Alice using a classifier H(x) of a second party Bob. The classifier is H ⁡ ( x ) = sign ⁢ ⁢ ( ∑ n = 1 N ⁢ h n ⁡ ( x ) ) , where h n ⁡ ( x ) = { α n x T ⁢ y n > Θ n β n otherwise , α n , β n and Θn are scalar values and yn is a vector storing parameters of the classifier. Bob generates a set of N random numbers, S1, . . . , SN, such that s = ∑ n = 1 N ⁢ s n , for each n=1, . . . , N, the following substeps are performed: applying a secure dot product to xTyn to obtain an for Alice and bn for Bob; applying a secure millionaire protocol to determine whether an is larger than Θn−bn, and returning a result of an+Sn, or βn+Sn; accumulating, by Alice, the result in cn. Then, apply the secure millionaire protocol to determine whether c = ∑ n = 1 N ⁢ c n is larger than s = ∑ n = 1 N ⁢ s n , and returning a positive sign if true, and a negative sign if false to classify the private data x.

    摘要翻译: 一种用于使用第二方Bob的分类器H(x)安全地分类第一方Alice的私有数据x的方法。 分类器是H⁡(x)= sign-务(Σn = 1 N hn⁡(x)),其中hn⁡(x)= {αnx T yn>否则,αn,β n和Thetan是标量值,yn是存储分类器参数的向量。 Bob生成一组N个随机数S1。 。 。 ,SN,使得对于每个n = 1,s =Σn = 1 N s n。 。 。 ,N,执行以下子步骤:将安全点产品应用于xTyn以获得用于Bob的Alice和bn; 应用安全的百万富翁协议来确定a是否大于Thetan-bn,并返回+ Sn或betan + Sn的结果; 由爱丽丝积累,结果在cn。 然后,应用安全的百万富翁协议来确定c =Σn = 1 N cn是否大于s =Σn = 1 N sn,并且如果为真,则返回正号,如果为假,则将负号标记为私有 数据x。

    System and Method for Tracking Objects with a Synthetic Aperture
    7.
    发明申请
    System and Method for Tracking Objects with a Synthetic Aperture 有权
    用于跟踪具有合成孔径的物体的系统和方法

    公开(公告)号:US20090092282A1

    公开(公告)日:2009-04-09

    申请号:US11866645

    申请日:2007-10-03

    IPC分类号: G06K9/00

    摘要: A computer implemented method tracks 3D positions of an object moving in a scene. A sequence of images is acquired of the scene with a set of cameras such that each time instant a set of images are acquired of the scene, in which each image includes pixels. Each set of images is aggregated into a synthetic aperture image including the pixels, and the pixels in each the set of images are matched corresponding to multiple locations and multiple depths of a target window with an appearance model to determine scores for the multiple locations and multiple depths. A particular location and a particular depth having a maximal score is selected as the 3D position of the moving object.

    摘要翻译: 计算机实现的方法跟踪在场景中移动的对象的3D位置。 利用一组摄像机获取场景序列,使得每个时间瞬间获取场景的一组图像,其中每个图像包括像素。 每组图像被聚合成包括像素的合成孔径图像,并且每个图像集合中的像素对应于具有外观模型的目标窗口的多个位置和多个深度来匹配,以确定多个位置和多个位置的分数 深度。 选择具有最大分数的特定位置和特定深度作为移动物体的3D位置。

    Method for secure component labeling in images
    8.
    发明授权
    Method for secure component labeling in images 有权
    图像中安全组件标签的方法

    公开(公告)号:US07391905B2

    公开(公告)日:2008-06-24

    申请号:US11005154

    申请日:2004-12-06

    IPC分类号: G06K9/34 G06K9/00

    摘要: A method processes an input image securely. An input image is acquired in a client and partitioned into a set of overlapping tiles. The set of overlapping tiles is transferred to a server. In the server, motion pixels in each tile that are immediately adjacent to other motions pixels in the tile are labeled locally to generate a set of locally labeled tiles. The set of locally labeled tiles is transferred to the client. In the client, the set of locally labeled tiles is labeled globally to generate a list of pairs of unique global labels. The list of pairs of unique global labels is transferred to the server. In the server, the pairs of unique global labels are classified into equivalence classes. The equivalence classes are transferred to the client and the motion pixels are relabeled in the client according to the equivalence classes to form connected components in the input image.

    摘要翻译: 一种方法可以安全地处理输入图像。 在客户端中获取输入图像,并将其分割成一组重叠的图块。 重叠瓦片组被传送到服务器。 在服务器中,与瓦片中的其他运动像素紧邻的每个瓦片中的运动像素被本地标记以生成一组局部标记的瓦片。 该组本地标记的图块被转移到客户端。 在客户端中,本地标记的图块集合被全局标记以生成唯一全局标签对的列表。 唯一全局标签对的列表被传送到服务器。 在服务器中,唯一的全局标签对被分类为等价类。 将等价类传送到客户端,并根据等价类在客户端中重新标记运动像素,以在输入图像中形成连接的组件。

    Detecting moving objects in videos with corner-based background model
    9.
    发明授权
    Detecting moving objects in videos with corner-based background model 失效
    使用基于角色的背景模型检测视频中的移动对象

    公开(公告)号:US07373012B2

    公开(公告)日:2008-05-13

    申请号:US11048536

    申请日:2005-02-01

    IPC分类号: G06K9/40

    CPC分类号: G06K9/4609 G06K9/38 G06T7/215

    摘要: A computer implemented method models a background in a sequence of frames of a video. For each frame, the method detects static corners using an array of pixels of the frame, and extracts, for each static corner, features from a window of pixels around the static corner. For each static corner, a descriptor is determined from the corresponding features. Each static corner and corresponding descriptor is stored in a memory, and each static corner is classified as a background or foreground according to the descriptor to model a background in the video.

    摘要翻译: 计算机实现的方法对视频帧的序列进行建模。 对于每个帧,该方法使用帧的像素数组来检测静态角,并为每个静态角提取来自静态角上的像素窗口的特征。 对于每个静态角,从相应的特征确定描述符。 每个静态角和相应的描述符都存储在一个存储器中,根据描述符将每个静态角分类为背景或前景,以对视频中的背景进行建模。

    Spectral method for sparse principal component analysis
    10.
    发明申请
    Spectral method for sparse principal component analysis 审中-公开
    稀疏主成分分析的光谱法

    公开(公告)号:US20070156471A1

    公开(公告)日:2007-07-05

    申请号:US11289343

    申请日:2005-11-29

    IPC分类号: G06F9/44 G06F17/50 G06Q40/00

    摘要: A method maximizes a candidate solution to a cardinality-constrained combinatorial optimization problem of sparse principal component analysis. An approximate method has as input a covariance matrix A, a candidate solution, and a sparsity parameter k. A variational renormalization for the candidate solution vector x with regards to the eigenvalue structure of the covariance matrix A and the sparsity parameter k is then performed by means of a sub-matrix eigenvalue decomposition of A to obtain a variance maximized k-sparse eigenvector x that is the best possible solution. Another method solves the problem by means of a nested greedy search technique that includes a forward and backward pass. An exact solution to the problem initializes a branch-and-bound search with an output of a greedy solution.

    摘要翻译: 一种方法将候选解最大化为稀疏主分量分析的基数约束组合优化问题。 近似方法具有协方差矩阵A,候选解和稀疏参数k作为输入。 然后通过A的子矩阵特征值分解来执行关于协方差矩阵A的特征值结构和稀疏参数k的候选解矢量x的变分重归一化,以获得方差最大化的k-稀疏特征向量x,其中 是最好的解决方案。 另一种方法通过嵌套的贪婪搜索技术来解决问题,该技术包括前进和后退。 问题的确切解决方案使用贪心解决方案的输出初始化分支搜索。