Abstract:
The invention provides nickel hydroxide secondary particles comprising agglomerates of primary particles of nickel hydroxide in the shape of a triangular prism or a triangular plate having a surface or a outer face in the form of a substantially equilateral triangle each side of which substantially equilateral triangle has a length of 1 to 10 &mgr;m. The invention further provides lithium nickel composite oxide secondary particles comprised of agglomerates of primary particles having a large particle diameter by mixing the nickel hydroxide secondary particles with a lithium compound and sintering the resulting mixture at a temperature of 600° C. to 1000° C. in an oxidative atmosphere.
Abstract:
A method and equipment are disclosed herein which liquefy and separate air through the use of a multiple rectifying tower system comprising a high pressure tower and a low pressure tower. The rectifying regions of the high pressure tower and the low pressure tower are divided into an equal number (at least two) of segments and gases at the tops of the respective segments of the high pressure tower are permitted to exchange heat with circulating liquids or liquid oxygen at the bottoms of the respective segments of the low pressure tower and to evaporate the circulating liquids or the liquid oxygen. The gases are then condensed to provide a circulating liquid for the low pressure tower.
Abstract:
In a method for treating a gas containing dusts therein under a monolithic catalyst consisting of a ceramic support which is substantially porous throughout the structure, and has active ingredients uniformly dispersed therein and passages therethrough parallel to the flow of the gas for allowing the gas to pass therethrough, the improvement in which the catalyst has the sintered front portion or has a vitreous coating on the front portion. Alternatively, the improvement in which a metal or sintered ceramic lid having openings therethrough is fixed onto the front face of the catalyst with the passages in alignment with the openings of the lid.
Abstract:
The present invention is directed to a method of continuously extruding and molding ceramic honey-comb shaped moldings by use of an extruding die including a tertiary channel grooved, corresponding to the cross-sectional shape of the core unit of the ceramic honey-comb, on the material outlet side of the extruding die; a primary channel composed of many independent holes bored from the material inlet side; and a secondary channel for forming an interlinked passage between the tertiary channel and the secondary channel.