Abstract:
An external combustion engine comprising a pipe-shaped main container in which a working fluid is sealed flowably in a liquid state, a heated part formed at a location of one end of the main container and heating part of the working fluid in the main container in order to make it evaporate, a cooled part formed at a location next to the heated part toward the other end of the main container and cooling the vapor of the working fluid evaporated at the heated part in order to make it condense, an output unit communicated with the other end of the main container and converting the displacement of the liquid phase part of the working fluid to mechanical energy for output, and a controller alternately performing a heat storage mode making displacement of the liquid phase part of the working fluid stop in order to make the heated part store heat and an output mode allowing displacement of the liquid phase part of the working fluid and taking output from the output unit.
Abstract:
A liquid pump for circulating working fluid (water) in a Rankine cycle comprises a U-shaped fluid vessel having a bending pipe portion and a pair of straight pipe portions, wherein a heating device and a cooling device are provided at one of the straight pipe portions for heating and cooling the water in the fluid vessel. The liquid pump further has a discharge pipe portion and an inlet pipe portion, and check valves are respectively provided in the discharge and inlet pipe portions. The water is vaporized by a heating operation of the heating device to increase pressure of the working fluid in the pump, so that the working fluid is discharged. The vaporized working fluid is then cooled down by the cooling device to decrease the pressure of the working fluid in the pump, so that the working fluid is sucked into the pump.
Abstract:
A steam engine has a pipe shaped fluid container, a heating and cooling devices respectively provided at a heating and cooling portions of the fluid container, and an output device connected to the fluid container, so that the output device is operated by the fluid pressure change in the fluid container, to generate an electric power. In such a steam engine, an inner radius “r1” of the cooling portion is made to almost equal to a depth “δ1” of the thermal penetration, which is calculated by the following formula (1); δ 1 = 2 a 1 ω ( 1 ) wherein, “a1” is a heat diffusivity of the working fluid at its low pressure, and “ω” is an angular frequency of the movement of the working fluid.
Abstract:
An external combustion engine including a container 10 sealed with a working medium 14 in liquid phase adapted to flow, a multiplicity of evaporators 201 to 204 for heating and evaporating part of the liquid-phase working medium 14, a multiplicity of condensers 221 to 224 for cooling and condensing the working medium 14 evaporated in the evaporators 201 to 204, and an output unit 11 for outputting by converting the displacement of the liquid-phase portion of the working medium 14 into mechanical energy. The multiplicity of the evaporators 201 to 204 share a heat source from which heat is supplied thereto. The engine further includes an influent liquid amount regulation unit whereby the liquid-phase portion of the working medium 14 in a greater amount flows into the evaporators nearer the heat source upon displacement of the liquid-phase portion of the working medium 14 toward the multiplicity of the evaporators 201 to 204 from the output unit 11, while the influent liquid amount is smaller for the evaporators farther from the heat source. In this way, heat loss is reduced resulting in improved efficiency.
Abstract:
An external combustion engine 10 is disclosed, wherein a container 11 sealed with a working medium adapted to flow in a liquid state includes a heating unit 13 for generating a vapor of the working medium 12 by heating part of the working medium, and a cooling unit 14 for liquefying by cooling the vapor. The volume of the working medium 12 is changed by the generation and liquefaction of the vapor, and the displacement of the liquid portion of the working medium 12 caused by the volume change of the working medium 12 is converted into and output as mechanical energy. The heating unit 13 is structured so that inner members 51a, 53a arranged on the inside and outer members 51b, 53b arranged on the outside are bonded to each other. The outer members 51b, 53b are made of a second material higher in heat resistance than the first material of the inner members 51a, 53a. Further, the thickness of the inner members 51a, 53a is not smaller than the thermal penetration depth δ of the first material.
Abstract:
An external combustion engine comprises a container (11) with a working liquid (12) sealed therein in a state adapted to flow, a heater (13) for heating and vaporizing the working liquid (12) in the container (11), and a cooler (14) for cooling and liquefying the vapor of the working liquid (12) heated and vaporized by the heater (13). The displacement of the working liquid (12) caused by the vapor volume change is output as mechanical energy by being converted into the mechanical energy. A pressure regulating liquid (18) is sealed in a pressure regulating container (16) communicating with the container (11). A pressure regulating unit (19) regulates the internal pressure (Pt) of the pressure regulating container (16). A control unit (21) controls the pressure regulating unit (19) in such a manner that the internal pressure (Pt) is decreased in the case where it is higher than the saturation vapor pressure (Ps1) of the working liquid (12) at the temperature (T1) of a heated portion (11a) of the container for vaporizing the working liquid (12), while the internal pressure (Pt) is increased in the case where it is lower than the saturation vapor pressure (Ps1).
Abstract:
An external combustion engine is disclosed, comprising a container (11) for sealing a working liquid (12) in a way adapted to allow the liquid to flow therein, a heater (13) for heating and vaporizing the working liquid (12) in the container (11), and a cooler (14) for cooling and liquefying the vapor of the working liquid (12) heated and vaporized by the heater (13). The displacement of the working liquid (12) caused by the volume change of the vapor of the working liquid (12) is output by being converted into mechanical energy. In the heated portion (11d) of the container (11) for vaporizing the working liquid (12), the direction of displacement of the working liquid (12) at the parts (17, 19) far from the cooler (14) is changed with respect to the direction of displacement at the part (16) near to the cooler (14).
Abstract:
A steam engine has a looped fluid container, in which working fluid is filled. A heating device, a cooling device and an output device are arranged at the fluid container. A lower side valve is provided at a fluid passage of the fluid container between the heating device and the output device. An upper side valve is provided at another fluid passage of the fluid container between the cooling device and the output device. The upper and lower valves are respectively controlled to open and close the respective fluid passages at proper timings, to increase heat efficiency.
Abstract:
A continuously variable transmission apparatus includes an input shaft, an output shaft, a continuously variable transmission mechanism, a differential gear mechanism and a bypass shaft. The continuously variable transmission mechanism is placed between the input shaft and the output shaft and is adapted to conduct rotation of the input shaft to the differential gear mechanism after changing a speed of the rotation. The bypass shaft is placed coaxially with the input shaft and the output shaft and is adapted to conduct the rotation of the input shaft to the differential gear mechanism while bypassing the continuously variable transmission mechanism. The differential gear mechanism is adapted to conduct the rotation from the continuously variable transmission mechanism and the bypass shaft to the output shaft.
Abstract:
An external combustion engine comprising a pipe-shaped main container in which a working fluid is sealed flowably in a liquid state, a heated part formed at a location of one end of the main container and heating part of the working fluid in the main container in order to make it evaporate, a cooled part formed at a location next to the heated part toward the other end of the main container and cooling the vapor of the working fluid evaporated at the heated part in order to make it condense, an output unit communicated with the other end of the main container and converting the displacement of the liquid phase part of the working fluid to mechanical energy for output, and a controller alternately performing a heat storage mode making displacement of the liquid phase part of the working fluid stop in order to make the heated part store heat and an output mode allowing displacement of the liquid phase part of the working fluid and taking output from the output unit.