Abstract:
In one aspect, the invention encompasses a LOCOS process. A pad oxide layer is provided over a silicon-comprising substrate. A silicon nitride layer is provided over the pad oxide layer and patterned with the pad oxide layer to form masking blocks. The patterning exposes portions of the silicon-comprising substrate between the masking blocks. The masking blocks comprise sidewalls. Polysilicon is formed along the sidewalls of the masking blocks. Subsequently, the silicon-comprising substrate and polysilicon are oxidized to form field oxide regions proximate the masking blocks. In another aspect, the invention encompasses a semiconductive material structure. Such structure includes a semiconductive material substrate and at least one composite block over the semiconductive material substrate. The composite block comprises a layer of silicon dioxide and a layer of silicon nitride over the layer of silicon dioxide. The silicon nitride and silicon dioxide have coextensive opposing sidewalls. The structure also comprises polysilicon projections along the coextensive silicon nitride and second dioxide sidewalls.
Abstract:
A thin film resistor structure (75) is formed on a dielectric layer (60). A capping layer (90) is formed above said thin film resistor structure (75) and vias (110) are formed in the capping layer (90) using a two step etching process comprising of a dry etch process and a wet etch process. Conductive layers (120) are formed in the vias and form electrical contacts to the thin film resistor structure (75).
Abstract:
In one aspect, the invention encompasses a method of forming a capacitor. A mass is formed over an electrical node. An opening is formed within the mass. The opening has a lower portion proximate the node and an upper portion above the lower portion. The lower portion is wider than the upper portion. A first conductive layer is formed within the opening and along a periphery of the opening. After the first conductive layer is formed, a portion of the mass is removed from beside the upper portion of the opening while another portion of the mass is left beside the lower portion of the opening. A dielectric material is formed over the first conductive layer, and a second conductive layer is formed over the dielectric material. The second conductive layer is separated from the first conductive layer by the dielectric material. In another aspect, the invention encompasses a capacitor construction.
Abstract:
In one aspect, the invention encompasses a LOCOS process. A pad oxide layer is provided over a silicon-comprising substrate. A silicon nitride layer is provided over the pad oxide layer and patterned with the pad oxide layer to form masking blocks. The patterning exposes portions of the silicon-comprising substrate between the masking blocks. The masking blocks comprise sidewalls. Polysilicon is formed along the sidewalls of the masking blocks. Subsequently, the silicon-comprising substrate and polysilicon are oxidized to form field oxide regions proximate the masking blocks. In another aspect, the invention encompasses a semiconductive material structure. Such structure includes a semiconductive material substrate and at least one composite block over the semiconductive material substrate. The composite block comprises a layer of silicon dioxide and a layer of silicon nitride over the layer of silicon dioxide. The silicon nitride and silicon dioxide have coextensive opposing sidewalls. The structure also comprises polysilicon projections along the coextensive silicon nitride and second dioxide sidewalls.
Abstract:
A Schottky barrier resistive gate switch which may be utilized for microwave switching. First and second metallizations which serve as signal inputs overlie a semiconductive substrate, making contact with a doped region thereof. A gate of high resistivity material which forms a Schottky barrier with the substrate is positioned between the metallizations. The doped region defines a channel, the conductivity of which is adjusted by the regulation of the Schottky depletion region formed therein.
Abstract:
In one embodiment, an integrated circuit includes a thin film resistor, which includes a resistor material that has been deposited on a substrate surface within a channel defined by opposing first and second portions of a stencil structure formed on the substrate surface, the resistor material having an initial width determined by a width of the channel. The stencil structure has been adapted to receive a planarizing material that protects against reduction of the initial width of the resistor material during subsequent process steps for removing the stencil structure. A head mask overlays an end portion of the thin film resistor and a dielectric overlays the head mask, the dielectric defining a via formed in the dielectric above a portion of the head mask. A conductive material has been deposited in the via, coupled to the portion of the head mask and electrically connecting the thin film resistor to other components of the integrated circuit.
Abstract:
The stress at the edges of a thin film conductor can be reduced by noncoincident layered structures, which takes advantage of the characteristic stress polarity changing from tensile to compressive or vice versa in the edge vicinity in order to avoid device reliability and performance problems. By using noncoincident layered structures, destructive stress interference from different layers can be achieved to reduce the stress or stress gradient at the edge. The structures and methods disclosed herein can advantageously be used in many integrated circuit and device manufacturing applications (including gates, wordlines, and bitlines).
Abstract:
In one aspect, the invention encompasses a method of forming a capacitor. A mass is formed over an electrical node. An opening is formed within the mass. The opening has a lower portion proximate the node and an upper portion above the lower portion. The lower portion is wider than the upper portion. A first conductive layer is formed within the opening and along a periphery of the opening. After the first conductive layer is formed, a portion of the mass is removed from beside the upper portion of the opening while another portion of the mass is left beside the lower portion of the opening. A dielectric material is formed over the first conductive layer, and a second conductive layer is formed over the dielectric material. The second conductive layer is separated from the first conductive layer by the dielectric material. In another aspect, the invention encompasses a capacitor construction.
Abstract:
The stress at the edges of a thin film conductor can be reduced by noncoincident layered structures, which takes advantage of the characteristic stress polarity changing from tensile to compressive or vice versa in the edge vicinity in order to avoid device reliability and performance problems. By using noncoincident layered structures, destructive stress interference from different layers can be achieved to reduce the stress or stress gradient at the edge. The structures and methods disclosed herein can advantageously be used in many integrated circuit and device manufacturing applications (including gates, wordlines, and bitlines).
Abstract:
The invention includes a method of reducing stress during formation of field oxide by LOCOS. Field oxide is formed by oxidizing a silicon substrate, and fluorine is incorporated into the field oxide during the oxidizing. After the fluorine is incorporated into the field oxide, the field oxide is annealed at a temperature of at least about 1000° C.