Abstract:
A cleaning system and method utilizing sonic whistle and other agitation methods to enhance the soil removal and mass transport capacity of the liquid carbon dioxide at low process temperatures. Agitation devices disposed in or couple to a cleaning chamber, and cause the liquid carbon dioxide to ultrasonically emulsify and disperse non-miscible liquids or insoluble solids, such as remove low solubility oils and greases. Cleaning is accomplished at temperatures between −68° F. and 32° F., and the temperature of the liquid carbon dioxide is typically below 32° F.
Abstract:
A piece of soiled fabric is cleaned by contacting it with a jet of an ionized soil-dislodging gas to dislodge the soil therefrom. The ionized gas and the use of an oppositely charged electrostatic filter aid in preventing redeposition of the soil onto the fabric. The fabric may be agitated while it is contacted with the gas jet. A portion of the piece of fabric may be treated with an electrostatic spotting compound that enhances the effect of the ionized gas and may also enhance the removal of the soil. An apparatus for accomplishing the cleaning includes a container having an interior in which the fabric is received, a gas jet nozzle directed into the interior of the container, a source of a pressurized gas communicating with an inlet of the gas jet nozzle, a gas jet manifold extending from the source to the gas jet nozzle, and a gas ionizer disposed to ionize the pressurized gas passing through the gas jet nozzle.
Abstract:
Fabrics are cleaned by treating at least a portion of the piece of fabric with a particulating chemical, and agitated by a gas jet of a particle-dislodging gas to dislodge the particulated soil. The particulating chemical loosens embedded non-particulate soil and converts it to a particulate form, which is then separated from the fabric by the particle-dislodging gas.
Abstract:
A process is provided for cleaning, disinfecting, and sterilizing substrates comprising the steps of: (a) placing the contaminated substrate in a cleaning vessel; (b) contacting the contaminated substrate with dense phase carbon dioxide in liquid form; (c) subjecting the substrate and the dense phase carbon dioxide to ultraviolet radiation having a wavelength within the range of about 180 to 300 nm for a duration and intensity sufficient to produce a photochemical reaction capable of destroying the DNA of microorganisms on the substrate; (d) substantially simultaneously subjecting at least the dense phase carbon dioxide to agitation; and (e) removing the dense phase carbon dioxide from the cleaning vessel and thereby transporting the contaminants from the substrate such that the substrate is cleaned and, in the case of contaminated garments, disinfected or, in the case of medical and dental instrumentation, sterilized. Substantially simultaneously with the UV exposure and agitation, the substrates are also subjected to an oxidizing sterilant, such as H.sub.2 O.sub.2.
Abstract:
Substantial amounts of particulate soils in garments can be removed by agitation in gas-jet in a solvent-free, low-pressure environment. The ability of the present gas-jet agitation system to remove particulate soils from garments and fabrics rivals that of conventional dry-cleaning processes which agitate the garments and fabrics while immersed in solvent. Thus, a dry-cleaning operation may consist of a solvent-immersion step for removing soluble soils and a gas-jet agitation step to remove particulates. Considerable savings in equipment and operating costs may be realized in the practice of the invention, since solvent flow rates need not be boosted to provide necessary agitation for particulate soil removal. The savings achievable by employing gas-jet agitation are even more pronounced in dense phase gas dry cleaning systems, which require pressurized environments to maintain a liquified solvent. Advantageously, the apparatus employed in the practice of the invention has no moving parts and is relatively inexpensive to fabricate and maintain. Further, the gas used as a means of agitation may be any commonly-available inexpensive gas, such as carbon dioxide, nitrogen, or air, so that the process is environmentally-friendly.
Abstract:
A method of replenishing liquid carbon dioxide solvent in a liquid carbon dioxide dry cleaning system or other dense phase carbon dioxide cleaning system. The method uses dry-ice or solid carbon dioxide, as a replenishing stock, thus reducing transportation, storage and handling costs. The method disposes solid carbon dioxide blocks in a cleaning chamber after a cleaning cycle. Liquid carbon dioxide solvent is boiled and is used to melt the solid carbon dioxide blocks. Liquid carbon dioxide solvent produced by melting the solid carbon dioxide blocks is pumped from the cleaning chamber into a storage tank to replenish the liquid carbon dioxide solvent.
Abstract:
An improved liquid carbon dioxide dry cleaning system containing an improved dry cleaning fluid. The dry cleaning fluid contains an antistatic agent for dissipating static charge on members or garments generated by friction during cleaning thereof. The concentration of the antistatic agent is typically less than 1 percent. Static charge present on the members or garments that are cleaned is transferred through the dry cleaning fluid to ground. This transfer of charge minimizes static charge buildup on the members or garments and suspended soil redeposition onto the members or garments. An odorizing agent or fragrance, and/or a deodorizing agent may be added to the cleaning fluid.
Abstract:
Substantial amounts of particulate soils in garments can be removed by agitation in gas-jet in a solvent-free, low-pressure environment. The ability of the present gas-jet agitation system to remove particulate soils from garments and fabrics rivals that of conventional dry-cleaning processes which agitate the garments and fabrics while immersed in solvent. Thus, a dry-cleaning operation may consist of a solvent-immersion step for removing soluble soils and a gas-jet agitation step to remove particulates. Considerable savings in equipment and operating costs may be realized in the practice of the invention, since solvent flow rates need not be boosted to provide necessary agitation for particulate soil removal. The savings achievable by employing gas-jet agitation are even more pronounced in dense phase gas dry cleaning systems, which require pressurized environments to maintain a liquified solvent. Advantageously, the apparatus employed in the practice of the invention has no moving parts and is relatively inexpensive to fabricate and maintain. Further, the gas used as a means of agitation may be any commonly-available inexpensive gas, such as carbon dioxide, nitrogen, or air, so that the process is environmentally-friendly.
Abstract:
Liquid carbon dioxide, in combination with agitation and, optionally, with process enhancers, such as surfactants, and solvents, such as water, is used to remove contaminants from garments or fabrics. Both apparatus and process are disclosed. Carbon dioxide-cleaned garments are rendered free of odor, require no drying, and the cost per unit solvent (by weight) is a fraction of that of conventional solvents.
Abstract:
Undesired material is removed from a chosen substrate by a process comprising the steps of (a) placing the substrate containing the undesired material in a cleaning chamber provided with cavitation-producing means; (b) introducing a liquefied gas, such as liquid carbon dioxide, into the cleaning chamber and contacting the substrate containing the undesired material with the liquid carbon dioxide at a temperature below its critical temperature; and (c) exposing the liquid carbon dioxide to the cavitation-producing means for a period of time sufficient to remove the undesired material from the substrate. The substrate containing the undesired material may optionally be contacted with carbon dioxide in the dense phase prior to and/or after the cavitation treatment to aid in removal of the undesired material. Further, spent liquid carbon dioxide may be treated to regenerate fresh liquid carbon dioxide which is recycled to the cleaning chamber. Other gases besides carbon dioxide which may be used include nitrous oxide, sulfur hexafluoride, and xenon.