摘要:
For driving and simultaneously evaluating a deflection and/or a rate of motion of an electrostatically excited oscillator element, excitation currents flowing during electrostatic excitation are determined, and deflection and/or the rate of motion of the oscillator element are determined based on the determined excitation currents.
摘要:
Disclosed is a method for driving and simultaneously determining the deflection (x(t)) and/or the rate of motion (v(t)) of an electrostatically excited oscillator element. According to said method, the deflection (x(t)) and/or the rate of motion e (v(t)) of the oscillator element is/are determined based on the excitation current (i1(t), i2(t)) flowing during electrostatic excitation. Also disclosed are an assembly for carrying out the inventive method as well as a rotational speed sensor (40) to be used in connection O with said method and said assembly.
摘要:
A method and a circuit arrangement for the start-up of a rate-of-turn sensor (DRS) comprising at least one oscillator element are disclosed, wherein the operational control of the rate-of-turn sensor amplifies a signal (v(t), x(t)) proportional to the instantaneous speed or deflection of the oscillator element used as operating signal (F(t)) to operate the oscillator element. During the start-up process for the rate-of-turn sensor (DRS) the amplification of the amplitude (AF) of the operating signal (F(t)) is set to a constant pre-settable value (AFC) the stimulation frequency of the operating signal (F(t)) being essentially continuously raised from a starting value (f1) below the main resonance frequency of the oscillation movement to a final value (f2) above the main resonance frequency and below a spurious resonance frequency with simultaneous monitoring of the deflection (x(t)) and/or the speed (v(t)) of the oscillator element, in order to determine the main resonance frequency. After reaching the final value (f2) and the main resonance frequency determination, the stimulation frequency of the operating signal (F(t)) is set to the main resonance frequency and the operational regulation of the amplitude and the stimulation frequency of the operating signal (F(t)) released.
摘要:
A capacitive sensor includes a plurality of individual condenser elements, each of which consist of a first, preferably circular, electrode and a second, preferably surrounding ring-shaped, electrode, which are mounted on one side of a nonconducting support. A common conductor is connected to each of the first electrodes of condenser elements. A signal can be detected separately from each of the condenser elements via conductors connected separately to the individual second electrodes. To increase the sensitivity and to avoid interference, the remote side of the support opposite to the one side is provided with a third additional electrode, which is at ground potential and also acts as a shield for interfering couplings. The sensor is used for measurement of the fuel film thickness in the intake of an internal combustion engine.
摘要:
The invention relates to a method for unambiguously determining a physical parameter Φ using m phase-measured values αi with 1≦i≦m, whereby the phase-measured values αi have different, integer periodicity values ni and an integer periodicity difference (a) with Δn>1 within an unambiguous range E of the physical parameter Φ. A value T with (b) and (c) is calculated based on the phase-measured values αi and the periodicity values ni thereof, and, within a reduced unambiguous range Ered with (d), a value V is allocated to the value T by allocation according to (e), wherein TUk stands for a respective lower limit and TOk for a respective upper limit of T. The allocation intervals between the upper (TOk) and the lower limits (TUk) for T, as wells as the distances (f) correspond at least to the periodicity difference Δn. In order to determine the physical parameter Φ, value V is added up with the phase-measured values αi in a weighted manner. Δ n = n i - n i - 1 ( a ) T = T ( α j , n i ) ( b ) j , l ∈ Z { 1 , … , i } ( c ) E red = 1 Δ n · E ( d ) V = V ( T ) = { V 1 f u ¨ r T ≥ T O 1 V 2 f u ¨ r T U 2 ≤ T
摘要翻译:本发明涉及一种使用具有1≦̸ i≦̸ m的m个相位测量值αi明确地确定物理参数Φ的方法,由此相位测量值αi具有不同的整数周期值ni和整数周期性差异(a)与 &Dgr; n> 1在物理参数Φ的明确范围E内。 基于相位测量值αi及其周期值ni来计算具有(b)和(c)的值T,并且在具有(d)的减小的明确范围Ered内,将值V分配给值T 通过根据(e)的分配,其中TUk代表相应的上限T的相应下限,TOk。对于T的上限(TOk)和下限(TUk)之间的分配间隔,作为距离 (f)至少对应于周期性差异Dgr; n。 为了确定物理参数Φ,以加权的方式将值V与相位测量值αi相加。 &Dgr (a)T = T(αj,n i)(b)j,l∈Z {1,...,i}(c)E red = 1&Dgr; (n)·(d)V = V(T)= {V 1(f,u,r,T)T≥TO1 V 2 fürüTU ud 2≤ T
摘要:
A method for operation of and simultaneous analysis of a rate-of-turn sensor, comprising an oscillator element and a Coriolis element arranged on the oscillation element is disclosed, comprising the following method steps: generation of a digital operating signal with an excitation frequency corresponding to the resonant frequency of the oscillator element, digital to analogue conversion of the digital operating signal and operation of the oscillator element with the analogue operating signal, recording a Coriolis speed of the Coriolis element occurring about a normal to both oscillation axes due to the rotation of the rate-of-turn sensor with generation of an analogue Coriolis' signal proportional to the Coriolis speed, analogue-to-digital conversion of the analogue Coriolis signal, phase-sensitive multiplication of the digital Coriolis signal with the digital operating signal to form an intermediate signal, generation of a control signal proportional to the rate of turn of the rate-of-turn sensor from the intermediate signal, multiplication of the control signal with the digital operating signal to give a digital compensation signal in phase with the digital operating signal, digital-to-analogue conversion of the digital compensation signal to give an analogue compensation signal in phase with the analogue operating signal and subjecting the Coriolis element to the analogue compensation signal and output of the control signal.
摘要:
A method for triggering a heterodyne interferometer having two acousto-optical modulators in separate light paths, a receiver generating an analog signal and a downstream A/D converter converting the analog signal into a digital signal is described. The one acousto-optical modulator is triggered at a modulation frequency f1 and the other acousto-optical modulator is triggered at another modulation frequency f2, the difference between modulation frequencies f1 and f2 forming a heterodyne frequency fHet and the analog signal being converted into the digital signal in the A/D converter at sampling frequency fa. In such a heterodyne interferometer, a fixed ratio of modulation frequencies is maintained, and they are prevented from shifting due to aging and drift by forming at least two of the frequencies of modulation frequencies f1, f2 and sampling frequency fa from a fundamental frequency fqartz of a common oscillator. As a result, it is also possible for sampling frequency fa to be in a fixed phase ratio to the differential frequency of modulation frequencies f1, f2, of heterodyne frequency fHet. Measurement accuracy is increased because sampling is performed at a constant phase, independently of drift and aging.
摘要:
A method for determining a rotation angle or a path, with the following steps: measurement of at least two phase values &agr;1, &agr;2 through the scanning of sensors that are associated with the respective phase values and have different periodicities, calculation of a working value k, which can be represented as a whole number, on the basis of the measured phase values &agr;1 and the periodicities ni associated with them, calculation of at least two scaled estimates &phgr;s1/2&pgr; on the basis of the phase values &agr;i, the periodicities ni, the working value k, and integral working factors ki that set the periodicities ni in relation to one another in a scaling relation, and weighted summation of the scaled estimates &phgr;s1/2&pgr; in order to obtain a determined estimate &PHgr;meas/2&pgr;.
摘要:
A method for determining the direction of an external magnetic field (B) using a magneto-resistive sensor comprises the following steps: superimposing a fluctuating magnetic field on the external magnetic field (B); creating a first and second signal dependent on the sine and cosine of the angle between the external magnetic field and a reference vector by decoupling or disregarding the respective signal components which are dependent on the fluctuating magnetic field; determination of a third signal which is dependent upon the angle between the external magnetic field and a reference vector on the basis of the first and second signal whereby said third signal has a periodicity of 180°; determination of a logic correction signal (K5) with regard to the signal component which is dependent on the fluctuating magnetic field decoupled from either the first or second signal and which adopts a value for the angle of the external magnetic field in a first angle range, in particular between 0° and 180° and adopts another value in a second angle range, in particular between 180° and 360°; and determination of the actual angle of magnetic field (B) on the basis of a logic correction signal (K5) and the third signal.
摘要:
A device for distance measurement using a semiconductor laser in the visible wavelength range, which functions according to the echo time method, includes a collimation objective for bundling the transmitted measuring beam bundle, a circuit arrangement for modulating the measuring beam, a receiving objective for receiving and imaging the measuring beam bundle reflected at the distant object onto a receiving device, and an evaluation device for determining and displaying the distance measured to the object. The circuit arrangement for modulating the measuring beam and the evaluation device can be switched between two different operating modes. In the first operating mode, the modulation takes place using a first frequency and in the second operating mode using a second frequency. These frequencies stand in a whole-member ratio to each other. The reflected signal in the first operating mode is multiplied using a third frequency and in the second operating mode using a fourth frequency, before they are sampled for evaluation, in the first operating mode using a first sampling frequency and in the second operating mode using a second sampling frequency. In this context, the first sampling frequency is the difference between the fourth and the second frequency, and the second sampling frequency is a whole-number fraction of the second frequency.