Abstract:
There is provided a cable position information management system, management method and program which efficiently perform cable position measurement, and manage the measurement information. Furthermore, there is provided a facility information management system and a facility information management program which allow a user to perform determinations relating to facility management immediately and accurately by the sharing and integration of individually managed facility information. In addition, there is provided a cable core wire management system, a cable core wire management method and a cable core wire management program which realize an improvement in efficiency and reliability of construction work performed on networks such as optical fiber networks.
Abstract:
A system and method for generating motion and trajectory data for a multi-gimbaled rotating platform. The system includes a motion generating unit for generating a set of motion equations for each degree of rotational freedom of the multi-gimbaled rotating platform, where each set of motion equations defines the rotational movement of the platform about a gimbal pivot axis between a starting position and an ending position. The movement characteristics of the gimbals are provided to the motion generating unit for generating a set of motion equations which define the movement of the gimbals between the starting position and the ending position of the rotating platform. The set of motion equations simulating movement of the rotating platform may be further utilized to generate trajectory data for the object being supported by the platform, so that the effect of the motion of the rotating platform on the object can be simulated without requiring the rotating platform to be actually moved in a field test.
Abstract:
An electronic compass system using information on a communications bus to eliminate magnetic noise which is integrated with an instrument cluster. A vehicle accessory, such as a blower motor, generates a known, consistent, magnetic field of intensity sufficient to cause a static magnetic offset in the electronic compass for each of its' electrical states. An electronic controller commands the vehicle accessory to change electrical states and transmits a vehicle event message on a communications bus. A magnetic field sensor detects a combination of Earth's magnetic field and the stray magnetic field produced by the vehicle accessory. A controller is coupled to the communications bus and uses the vehicle event message to look up a predetermined correction factor, corresponding to the electrical state, to eliminate the effect of the static magnetic offset. The controller then displays a heading unaffected by the static magnetic offset.
Abstract:
To provide a moving body detection system capable of reliably receiving response signals and discerning the arrangement of opposing moving bodies. A moving body detection system for transmitting and receiving signals in such a manner that moving bodies can detect each other, wherein each moving body transmits an ID code for identifying the moving body itself and giving a priority to the moving body as an ID code signal of a fixed time period, each moving body receives said ID code signals of other moving bodies, each moving body receiving an ID code signal makes a determination as to whether or not a neighboring upper order moving body of a higher order than itself is present within a prescribed distance and each moving body determining the presence of a neighboring upper order moving body receives a detection signal transmitted from a detection side moving body and transmits a response signal only when the neighboring upper order moving body is determined not to be present.
Abstract:
A system and method for determining attitude using triaxial micro electro-mechanical accelerometer-magnetometer sensors. The triaxial accelerometer-magnetometer sensors measure the triaxial components of the local gravity and magnetic field along three sensing axes of the sensors. The misalignment of the components due to nonorthogonal triaxial assembling of the sensors is estimated via performing three optical alignments and is further compensated in the sensing outputs. A micro-cube with three orthogonal coated mirrors is fixed on the circuit board of the system for implementing the optical alignments. The compensated sensing components are processed to figure out the attitude using Orientation Cosine Conversion of the local gravity and magnetic field. The computation for determining the attitude is based on the inverse tangent of the ratio of the processed components, which is more precise than the computation using the absolute values of the components.
Abstract:
A pattern is determined of the neck movement of a subject. The head/body movement of the subject is recorded with markers placed on the shoulders and on the head and thus moving with the subject. The locus curve of each marker in three-dimensional space is then determined in dependence on the time and it is stored as a data set. The neck movement is isolated from the head and torso movements by determining the difference between the average of the two locus curves that represent the shoulder movements and the locus curve representing the head movement. The pattern of movement established on the cranio-corpo-graphy is evaluated and analyzed using a data-processing device. The method is particularly suitable for determining the presence and the severity of an injury to the cervical spine as a result of whiplash caused by a traffic accident.
Abstract:
A self-adaptable proximity detector delivering a binary output signal for the presence or absence of a target. The proximity detector includes a processing unit and operates according to a short learning mode for an adjustment relative to its environment, according to a long learning mode for an adjustment relative to its environment and to a target, and according to a working mode corresponding to normal operation. The proximity detector also includes a variable digital storage resistor driven by the processing unit in the learning mode and connected to the detection stage so that variation of the value of the digital resistor causes a variation of the switching threshold. In the working mode, the processing unit is in a standby state and the variable digital storage resistor remains at its set operating value.
Abstract:
A process for determining the alignment of a cylindrical body (10) with respect to a reference direction (18), by a position measurement probe (14) which is calibrated to the reference direction, a first position measurement being taken in a first measurement position on the peripheral surface (12) of the body and a second position measurement being taken in at least one second measurement position on the peripheral surface of the body which is displaced by an angle of rotation (&phgr;) in the peripheral direction with respect to the axis of the body from the first measurement position, and from the measurements data is calculated with respect to the alignment of the body with respect to the reference direction.
Abstract:
The present invention is directed to a position detection method and apparatus whereby a first A.C. output signal having an electric phase angle shifted in a positive direction in accordance with a position-to-be-detected is produced along with a second A.C. output signal having an electric phase angle shifted in a negative direction. First and second detection data are then generated by detecting respective phase differences of the first and second A.C. output signals from a predetermined reference phase. The first and second predicted values are provided on the bases of at least two successive samples of the first and second detection data, respectively. The first and second predicted values are then modified to provide a standard predicted value for correcting any nonlinear error resulting from the Doppler effect. Using this standard predicted value, predictive interpolation is performed on the first and second detection data sequentially with the passage of time to provide first and second interpolated data.
Abstract:
A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.