Abstract:
A method for controlling the traction slip of a vehicle on a roadway with sidewise different coefficients of friction includes the following steps: identifying a driving situation on a roadway with sidewise different coefficients of friction and, when the driving situation is identified and traction slip is encountered on both wheels, decreasing the brake pressure of the driven wheel on the low coefficient-of-friction side. A device for controlling the traction slip of a vehicle on a roadway with sidewise different coefficients of friction includes a determining device for determining a driving situation on a roadway with sidewise different coefficients of friction, and a brake actuation control which decreases the brake pressure of the driven wheel on the low coefficient-of-friction side when the driving situation is identified and traction slip is encountered on both wheels.
Abstract:
A system for controlling the traction slip of a vehicle including identifying a start situation with a high coefficient of friction uphill or with a heavy vehicle load, and once the start situation is identified and traction slip prevails, reducing a brake control intervention and/or increasing the nominal engine torque.
Abstract:
A two-tube shock absorber for automotive vehicles is furnished with a shock absorber valve positioned at the lower end of its power cylinder and comprising a pilot control stage, a main stage to adjust its "soft" characteristic curve which is desired for reasons of driving comfort, or a special characteristic curve out of a field of potential characteristic curves. According to the invention, in a lower range of piston speed the shock absorbing power is determined exclusively by the variable cross-sectional area of flow of the pilot control stage wherein the main stage remains closed. In an upper range of piston speed the shock absorbing power is determined by the variable flow cross-sectional areas both of the main stage and of the pilot control stage.
Abstract:
A two-tube shock absorber for automotive vehicles is furnished with a shock absorber piston and an electromagnetically actuatable unidirectional shock absorber valve to adjust a "smooth" characteristic which is desired for enhancing driving comfort. The shock absorber valve is alternatively configurated in the shape of a single-stage, or a two-stage slide valve. The position of the slide depends on the hydraulic pressure differential which decreases above the shock absorber valve, the volumetric stream which flows through the shock absorber valve, and the actuating current of the electromagnetic actuating unit. The inventive shock absorber allows the selection of a special characteristic curve out of a family of potential characteristic curves. Simultaneously, the sensitivity of the shock absorber to errors of the electromagnetic actuation is eliminated.