SYSTEMS AND METHODS FOR REAL TIME CLASSIFICATION AND PERFORMANCE MONITORING OF BATCH PROCESSES
    1.
    发明申请
    SYSTEMS AND METHODS FOR REAL TIME CLASSIFICATION AND PERFORMANCE MONITORING OF BATCH PROCESSES 有权
    用于实时分类和分批处理性能监测的系统和方法

    公开(公告)号:US20100063611A1

    公开(公告)日:2010-03-11

    申请号:US12208686

    申请日:2008-09-11

    IPC分类号: G06F19/00

    CPC分类号: G05B23/024

    摘要: Systems and methods (300) for offline/online performance monitoring of batch processes (BPs) involving obtaining archived data (AD) obtained during runs of BP and including information defining a batch quality attribute for each run. The method also involves forming clusters by classifying AD for the runs into classes based on the batch quality attribute(s) and building a first multivariate statistical model (MSM) using AD. The method can further involve building a wavelet analysis based feature matrix (FM) using AD, forming a first projection (1200) by projecting FM onto a first MSM, building a second MSM (1300) using information obtained from the first projection, and computing centroids (C902, . . . , C918) and boundary profiles for the clusters (902, . . . , 918). The method can involve performing an online/offline performance monitoring (700/800) using an integrated version of the first and second MSM, a classification algorithm, centroids, and boundary profiles.

    摘要翻译: 用于批处理过程(BP)的离线/在线性能监视的系统和方法(300),涉及获取BP运行期间获得的归档数据(AD),并包括为每个运行定义批次质量属性的信息。 该方法还涉及通过基于批次质量属性将AD分类为类,并使用AD构建第一多元统计模型(MSM)来形成集群。 该方法还可以包括使用AD构建基于小波分析的特征矩阵(FM),通过将FM投影到第一MSM上形成第一投影(1200),使用从第一投影获得的信息构建第二MSM(1300) 重心(C902,... C918)和群集的边界轮廓(902,... 918)。 该方法可以包括使用第一和第二MSM的集成版本,分类算法,质心和边界轮廓来执行在线/离线性能监视(700/800)。

    SYSTEMS AND METHODS FOR OFFLINE AND/OR ONLINE BATCH MONITORING USING DECOMPOSITION AND SIGNAL APPROXIMATION APPROACHES
    2.
    发明申请
    SYSTEMS AND METHODS FOR OFFLINE AND/OR ONLINE BATCH MONITORING USING DECOMPOSITION AND SIGNAL APPROXIMATION APPROACHES 有权
    使用分解和信号近似方法进行离线和/或在线批量监测的系统和方法

    公开(公告)号:US20100017008A1

    公开(公告)日:2010-01-21

    申请号:US12174955

    申请日:2008-07-17

    IPC分类号: G06F19/00

    摘要: A method (300, 400, 500, 1200) for offline/online monitoring of batch processes. The method involves (312) decomposing a time domain of a batch process run (BPR) into several blocks and (334) building multivariate statistical models (MSMs) for each of them using archived data for a batch process (ABPD). ABPD comprises stored data obtained during BPRs. The method also involves (506, 1204) retrieving recently stored data (RSD) for a recent fully performed BPR run (FPRNEW) or current BPR run. The method further involves (520, 1210) building a feature vector matrix (FVM) using RSD. FVM contains feature vectors representing statistical measures of wavelet coefficients determined for variables (v0, . . . , vJ). A projection (1100, 1150, 1190) is formed by projecting feature vectors onto at least one MSM or a combined multivariate statistical model (CMSM). CMSM is a weighted average of at least two MSMs. Subsequently, at least one estimate is generated for FPRNEW or current BPR run using information provided by the projection (528, 1220).

    摘要翻译: 一种用于批处理过程的脱机/在线监测的方法(300,400,500,100)。 该方法涉及(312)将批处理运行(BPR)的时域分解为若干块,并且(334)使用用于批处理(ABPD)的归档数据为其中的每一个构建多变量统计模型(MSM)。 ABPD包括在BPR期间获得的存储数据。 该方法还涉及(506,1204)检索用于最近完全执行的BPR运行(FPRNEW)或当前BPR运行的最近存储的数据(RSD)。 该方法还涉及(520,1012)使用RSD构建特征向量矩阵(FVM)。 FVM包含表示为变量(v0,...,vJ)确定的小波系数的统计度量的特征向量。 通过将特征向量投影到至少一个MSM或组合多变量统计模型(CMSM)上来形成投影(1100,1150,1190)。 CMSM是至少两个MSM的加权平均数。 随后,使用由投影(528,1220)提供的信息,为FPRNEW或当前BPR运行生成至少一个估计。

    Systems and methods for real time classification and performance monitoring of batch processes
    3.
    发明授权
    Systems and methods for real time classification and performance monitoring of batch processes 有权
    批量处理的实时分类和性能监测的系统和方法

    公开(公告)号:US08090676B2

    公开(公告)日:2012-01-03

    申请号:US12208686

    申请日:2008-09-11

    IPC分类号: G06F15/00 G06F15/18 G06F19/00

    CPC分类号: G05B23/024

    摘要: Systems and methods (300) for offline/online performance monitoring of batch processes (BPs) involving obtaining archived data (AD) obtained during runs of BP and including information defining a batch quality attribute for each run. The method also involves forming clusters by classifying AD for the runs into classes based on the batch quality attribute(s) and building a first multivariate statistical model (MSM) using AD. The method can further involve building a wavelet analysis based feature matrix (FM) using AD, forming a first projection (1200) by projecting FM onto a first MSM, building a second MSM (1300) using information obtained from the first projection, and computing centroids (C902, . . . , C918) and boundary profiles for the clusters (902, . . . , 918). The method can involve performing an online/offline performance monitoring (700/800) using an integrated version of the first and second MSM, a classification algorithm, centroids, and boundary profiles.

    摘要翻译: 用于批处理过程(BP)的离线/在线性能监视的系统和方法(300),涉及获取BP运行期间获得的归档数据(AD),并包括为每个运行定义批次质量属性的信息。 该方法还涉及通过基于批次质量属性将AD分类为类,并使用AD构建第一多元统计模型(MSM)来形成集群。 该方法还可以包括使用AD构建基于小波分析的特征矩阵(FM),通过将FM投影到第一MSM上形成第一投影(1200),使用从第一投影获得的信息构建第二MSM(1300) 重心(C902,... C918)和群集的边界轮廓(902,... 918)。 该方法可以包括使用第一和第二MSM的集成版本,分类算法,质心和边界轮廓来执行在线/离线性能监视(700/800)。

    Systems and methods for offline and/or online batch monitoring using decomposition and signal approximation approaches
    4.
    发明授权
    Systems and methods for offline and/or online batch monitoring using decomposition and signal approximation approaches 有权
    使用分解和信号近似方法进行离线和/或在线批量监控的系统和方法

    公开(公告)号:US08078434B2

    公开(公告)日:2011-12-13

    申请号:US12174955

    申请日:2008-07-17

    IPC分类号: G06F7/60 G06F17/10

    摘要: A method (300, 400, 500, 1200) for offline/online monitoring of batch processes. The method involves (312) decomposing a time domain of a batch process run (BPR) into several blocks and (334) building multivariate statistical models (MSMs) for each of them using archived data for a batch process (ABPD). ABPD comprises stored data obtained during BPRs. The method also involves (506, 1204) retrieving recently stored data (RSD) for a recent fully performed BPR run (FPRNEW) or current BPR run. The method further involves (520, 1210) building a feature vector matrix (FVM) using RSD. FVM contains feature vectors representing statistical measures of wavelet coefficients determined for variables (v0, . . . , vJ). A projection (1100, 1150, 1190) is formed by projecting feature vectors onto at least one MSM or a combined multivariate statistical model (CMSM). CMSM is a weighted average of at least two MSMs. Subsequently, at least one estimate is generated for FPRNEW or current BPR run using information provided by the projection (528, 1220).

    摘要翻译: 一种用于批处理过程的脱机/在线监测的方法(300,400,500,100)。 该方法涉及(312)将批处理运行(BPR)的时域分解为若干块,并且(334)使用用于批处理(ABPD)的归档数据为其中的每一个构建多变量统计模型(MSM)。 ABPD包括在BPR期间获得的存储数据。 该方法还涉及(506,1204)检索用于最近完全执行的BPR运行(FPRNEW)或当前BPR运行的最近存储的数据(RSD)。 该方法还涉及(520,1012)使用RSD构建特征向量矩阵(FVM)。 FVM包含表示为变量(v0,...,vJ)确定的小波系数的统计度量的特征向量。 通过将特征向量投影到至少一个MSM或组合多变量统计模型(CMSM)上来形成投影(1100,1150,1190)。 CMSM是至少两个MSM的加权平均数。 随后,使用由投影(528,1220)提供的信息,为FPRNEW或当前BPR运行生成至少一个估计。

    SYSTEMS AND METHODS FOR ENGINE DIAGNOSIS USING WAVELET TRANSFORMATIONS
    5.
    发明申请
    SYSTEMS AND METHODS FOR ENGINE DIAGNOSIS USING WAVELET TRANSFORMATIONS 审中-公开
    使用小波变换进行发动机诊断的系统和方法

    公开(公告)号:US20090326754A1

    公开(公告)日:2009-12-31

    申请号:US12165267

    申请日:2008-06-30

    IPC分类号: G01M15/05

    CPC分类号: G05B23/0221 G05B23/0281

    摘要: A method for performing diagnosis on an engine includes the steps of obtaining data for a plurality of variables pertaining to the engine, transforming the data with respect to each of the plurality of variables using a wavelet transformation, to thereby generate initial coefficients for each of the plurality of variables, and aggregating the initial coefficients for each of the plurality of variables, to thereby generate an aggregate set of coefficients for the plurality of variables.

    摘要翻译: 一种用于在发动机上执行诊断的方法包括以下步骤:获得关于发动机的多个变量的数据,使用小波变换相对于多个变量中的每一个变换数据,从而生成每个变量的初始系数 多个变量,并且聚合多个变量中的每一个的初始系数,从而生成用于多个变量的一组系数。