摘要:
Photomask patterns are represented using contours defined by level-set functions. Given target pattern, contours are optimized such that defined photomask, when used in photolithographic process, prints wafer pattern faithful to target pattern. Optimization utilizes “merit function” for encoding aspects of photolithographic process, preferences relating to resulting pattern (e.g. restriction to rectilinear patterns), robustness against process variations, as well as restrictions imposed relating to practical and economic manufacturability of photomasks.
摘要:
Photomask patterns are represented using contours defined by mask functions. Given target pattern, contours are optimized such that defined photomask, when used in photolithographic process, prints wafer pattern faithful to target pattern. Optimization utilizes “merit function” for encoding aspects of photolithographic process, preferences relating to resulting pattern (e.g. restriction to rectilinear patterns), robustness against process variations, as well as restrictions imposed relating to practical and economic manufacturability of photomasks.
摘要:
Photomask patterns are represented using contours defined by level-set functions. Given target pattern, contours are optimized such that defined photomask, when used in photolithographic process, prints wafer pattern faithful to target pattern. Optimization utilizes “merit function” for encoding aspects of photolithographic process, preferences relating to resulting pattern (e.g. restriction to rectilinear patterns), robustness against process variations, as well as restrictions imposed relating to practical and economic manufacturability of photomasks.
摘要:
This invention relates to a method and apparatus for accurate compression and decompression of data. More specifically, this invention relates to a method and apparatus for compressing three dimensional spatial points (so called “point cloud”) and decompressing such data to produce an accurate point cloud. In one embodiment of the present invention, a level set based method is used to reconstruct a surface to approximate the surface of the point cloud. This reconstructed surface is defined implicitly as the zero level set of a function, which can be computed on a regular three-dimensional rectangular grid. Furthermore, the three-dimensional grid may be rearranged into a two-dimensional grid where the data are compressed and stored in a form of gradient. In order to recover the point cloud, the three-dimensional grid is rebuilt from the two-dimensional data and an interpolating algorithm on the implicit function is utilized to compute the points on the surface.
摘要:
This invention relates to a method and apparatus for image processing, and more particularly, this invention relates to a method and apparatus for processing image data generated by bioanalytical devices, such as DNA sequencers. An object of the present invention is to remove artifacts such as noise, blur, background, non-uniform illumination, lack of registration, and extract pixel signals back to DNA-beads in a way that de-mixes pixels that contain contributions from nearby beads. In one aspect of the present invention, a system for optimizing an image comprises means for receiving an initial image which includes a plurality of microparticles with different intensities; a computing device, comprising a processor executing instructions to perform: generating an initial function denoting each microparticle's location and intensity in the initial image; determining an image processing operator adapted to determine an extent of point spread and blurriness in the initial image; computing an optimum function denoting each microparticle's location and intensity in an optimizing image; and producing the optimizing image with enhanced accuracy and density of the microparticles.
摘要:
This invention relates to a method and apparatus for accurate compression and decompression of data. More specifically, this invention relates to a method and apparatus for compressing three dimensional spatial points (so called “point cloud”) and decompressing such data to produce an accurate point cloud. In one embodiment of the present invention, a level set based method is used to reconstruct a surface to approximate the surface of the point cloud. This reconstructed surface is defined implicitly as the zero level set of a function, which can be computed on a regular three-dimensional rectangular grid. Furthermore, the three-dimensional grid may be rearranged into a two-dimensional grid where the data are compressed and stored in a form of gradient. In order to recover the point cloud, the three-dimensional grid is rebuilt from the two-dimensional data and an interpolating algorithm on the implicit function is utilized to compute the points on the surface.
摘要:
Photomask patterns are represented using contours defined by level-set functions. Given target pattern, contours are optimized such that defined photomask, when used in photolithographic process, prints wafer pattern faithful to target pattern. Optimization utilizes “merit function” for encoding aspects of photolithographic process, preferences relating to resulting pattern (e.g. restriction to rectilinear patterns), robustness against process variations, as well as restrictions imposed relating to practical and economic manufacturability of photomasks.
摘要:
Photomask patterns are represented using contours defined by level-set functions. Given target pattern, contours are optimized such that defined photomask, when used in photolithographic process, prints wafer pattern faithful to target pattern. Optimization utilizes “merit function” for encoding aspects of photolithographic process, preferences relating to resulting pattern (e.g. restriction to rectilinear patterns), robustness against process variations, as well as restrictions imposed relating to practical and economic manufacturability of photomasks.
摘要:
Photomask patterns are represented using contours defined by level-set functions. Given target pattern, contours are optimized such that defined photomask, when used in photolithographic process, prints wafer pattern faithful to target pattern. Optimization utilizes “merit function” for encoding aspects of photolithographic process, preferences relating to resulting pattern (e.g. restriction to rectilinear patterns), robustness against process variations, as well as restrictions imposed relating to practical and economic manufacturability of photomasks.
摘要:
Photomask patterns are represented using contours defined by level-set functions. Given target pattern, contours are optimized such that defined photomask, when used in photolithographic process, prints wafer pattern faithful to target pattern. Optimization utilizes “merit function” for encoding aspects of photolithographic process, preferences relating to resulting pattern (e.g. restriction to rectilinear patterns), robustness against process variations, as well as restrictions imposed relating to practical and economic manufacturability of photomasks.