摘要:
In one embodiment, a first network device may receive a request for an identifier of at least one target to service a client. The first network device may obtain an identifier of each of two or more targets. The first network device may then determine whether to redirect the request. The first network device may redirect the request to a second network device according to a result of the determining step, where the first network device is in a first autonomous system and the second network device is in a second autonomous system.
摘要:
Disclosed are methods and apparatus for flooding link state packets or packet data units (LSP's) from a first node to one other LSP receiving node, where the LSP's are flooded in an order that is related to relative costs of various paths emanating from the first node. That is, the first node sends its own LSP first since the first node has no cost relative to itself. The first node then sends other LSP's that are associated with a plurality of other LSP sending nodes that have previously flooded their LSP's to the first node, and these other LSP's are sent by the first node to the other LSP receiving node in an order related to the relative costs associated with the paths from the first node to each of the other LSP sending nodes which had previously sent the other LSP's to the first node.
摘要:
In one embodiment, a node in a computer network joins a global ring associated with a distributed hash table (DHT), and maintains a DHT routing table and DHT database for the global ring. In addition, the node may determine a particular service class for which the node is configured, and may join a particular service-based sub-ring according to the particular service class, where all nodes of the particular service-based sub-ring are within the global ring. As such, a service-based DHT routing table and service-based DHT database may be maintained for the particular service-based sub-ring, such that DHT operations identified by the particular service class are routed to the particular service-based sub-ring (e.g., by a portal node).
摘要:
A method, system, apparatus and machine-readable medium for transmitting a packet through a network to convey network topology is provided. The method includes the step of generating at least one link state protocol data unit (LSP) with a first identifier until reaching a maximum sequence number in a sequence assigned to a network device, represented by the first identifier. The method further includes the step of modifying the first identifier to produce a second identifier. The method also includes the step of generating at least one LSP with the second identifier, and with a sequence number that is less than or equal to the maximum sequence number in the sequence. The system for transmitting a packet through a network, to convey network topology, comprises the means for performing the above-mentioned method steps.
摘要:
Disclosed are methods and apparatus for flooding link state packets or packet data units (LSP's) from a first node to one other LSP receiving node, where the LSP's are flooded in an order that is related to relative costs of various paths emanating from the first node. That is, the first node sends its own LSP first since the first node has no cost relative to itself. The first node then sends other LSP's that are associated with a plurality of other LSP sending nodes that have previously flooded their LSP's to the first node. These other LSP's are sent by the first node to the other LSP receiving node in an order related to the relative costs associated with the paths from the first node to each of the other LSP sending nodes which had previously sent the other LSP's to the first node.
摘要:
Methods, systems, and apparatuses for transmitting link state packet (LSP) through a network are provided. The method includes dividing the LSP into LSP fragments having respective fragment numbers, transmitting the LSP fragments repetitively through the network, identifying at least one LSP fragment that is updated while the LSP fragments are being transmitted, and retransmitting the identified LSP fragments. The transmitted updated LSP is used for processing the Shortest Path First algorithm to identify accurately the shortest path that can be used to establish communication in the network.
摘要:
Disclosed are methods and apparatus for flooding link state packets or packet data units (LSP's) from a first node to one other LSP receiving node, where the LSP's are flooded in an order that is related to relative costs of various paths emanating from the first node. That is, the first node sends its own LSP first since the first node has no cost relative to itself. The first node then sends other LSP's that are associated with a plurality of other LSP sending nodes that have previously flooded their LSP's to the first node. These other LSP's are sent by the first node to the other LSP receiving node in an order related to the relative costs associated with the paths from the first node to each of the other LSP sending nodes which had previously sent the other LSP's to the first node.
摘要:
A system and method are disclosed for determining when to set up or tear down such a temporary transit path so that temporary transit paths are set up when they are needed and torn down when they are no longer needed. A temporary transit path is set up when the bit rate exceeds a first threshold. The temporary transit path is torn down when the bit rate is less than a second threshold. The temporary transit path is set up or torn down between a source station's router and a next hop router. The temporary transit path is set up within a subnetwork that includes the source station, the next hop router, and an intermediate router that is interconnected by a plurality of permanent transit paths to the source station and the next hop router. In one embodiment, a method for creating a temporary path for data packet transmission in the subnetwork is disclosed. Transmission of the data packets is initiated over the permanent transit paths that are coupled between the source station and the next hop router. A bit rate of the data packets from the source station to the next hop router is measured after initiating the transmission. Data packets transmission over the permanent transit paths is continued when the measured bit rate is below a first predetermined value. A temporary transit path between the source station and the next hop router is created when the measured bit rate is above the first predetermined value. The data packets are transmitted over the created temporary transit path when the measured bit rate is above the first predetermined value. In a preferred embodiment, the bit rate is measured again after creating the temporary transit path and transmitting the data packets over the created temporary transit path. The created temporary transit path is torn down when the bit rate is below the second predetermined value. Transmission of the data packets is sent over the permanent transit paths from the source station to the next hop routers once the temporary transit path is torn down.
摘要:
In a link state protocol such as an interior gateway protocol (IGP), link state advertisements or link state packets (LSA/LSPs) are sent only to network nodes that have expressed interest in them, rather than always flooding them.
摘要:
Disclosed are methods and apparatus for handling Link State Packets (LSPs) sent between processing nodes within a computer network. At a first node, an LSP sent by a second node is received. The received LSP specifies connectivity information regarding the second node. It is then determined whether one of two conditions is met: either the received LSP is an updated LSP even though it appears older and a corresponding stored LSP fails authentication, or the received LSP fails authentication and it appears newer. If it is determined that one of these conditions is met, as well as purging criteria, then updating procedures are then performed on the LSP information that is maintained by the first node, where the LSP information was originally obtained from a corresponding LSP sent by the second node.