Abstract:
A resource index on a computing device identifies multiple resource instances (e.g., multiple user interface (UI) resource instances) of multiple resource items (e.g., of multiple UI resource items), each resource instance having one or more resource instance conditions. In response to a request for a resource item received from an application, a determination is made based on the resource index of one of the multiple resource instances that satisfy conditions associated with the request, and the one of the multiple resource instances is returned to the application. Additionally, the resource index can be used to identify potential errors in running an application in various potential contexts.
Abstract:
Architecture that facilitates the package partitioning of application resources based on conditions, and the package applicability based on the conditions. An index is created for a unified lookup of the available resources. At build time of an application, the resources are indexed and determined to be applicable based on the conditions. The condition under which the resource is applicable is then used to automatically partition the resource into an appropriate package. Each resource package then becomes applicable under the conditions in which the resources within it are applicable, and is deployed to the user if the user merits the conditions (e.g., an English user will receive an English package of English strings, but not a French package). Before the application is run, the references to the resources are merged and can be used to do appropriate lookup of what resources are available.
Abstract:
An improved application architecture comprises a bifurcated structure having a language neutral portion and a localizable portion, compacted for efficiency into a smaller set of larger files. This bifurcated structure allows for easier distribution and updating of the application, while the reduced set of files provides for more efficient file management. A resource manifest can be specified during the compile stage to identify elements that are language specific and elements that remain language neutral. Furthermore, additional software can be used after compilation for compacting multiple localizable elements into a single file. Such compacting software can receive inputs specifying the language specific resources which are to be compacted into larger files, and the identity of those larger files. In addition, a file format can be used that can contain multiple language specific resources and can facilitate retrieval and access of individual language specific resources by the relevant language independent code.
Abstract:
Architecture that facilitates the package partitioning of application resources based on conditions, and the package applicability based on the conditions. An index is created for a unified lookup of the available resources. At build time of an application, the resources are indexed and determined to be applicable based on the conditions. The condition under which the resource is applicable is then used to automatically partition the resource into an appropriate package. Each resource package then becomes applicable under the conditions in which the resources within it are applicable, and is deployed to the user if the user merits the conditions (e.g., an English user will receive an English package of English strings, but not a French package). Before the application is run, the references to the resources are merged and can be used to do appropriate lookup of what resources are available.
Abstract:
A resource index on a computing device identifies multiple resource instances (e.g., multiple user interface (UI) resource instances) of multiple resource items (e.g., of multiple UI resource items), each resource instance having one or more resource instance conditions. In response to a request for a resource item received from an application, a determination is made based on the resource index of one of the multiple resource instances that satisfy conditions associated with the request, and the one of the multiple resource instances is returned to the application. Additionally, the resource index can be used to identify potential errors in running an application in various potential contexts.
Abstract:
An improved application architecture comprises a bifurcated structure having a language neutral portion and a localizable portion, compacted for efficiency into a smaller set of larger files. This bifurcated structure allows for easier distribution and updating of the application, while the reduced set of files provides for more efficient file management. A resource manifest can be specified during the compile stage to identify elements that are language specific and elements that remain language neutral. Furthermore, additional software can be used after compilation for compacting multiple localizable elements into a single file. Such compacting software can receive inputs specifying the language specific resources which are to be compacted into larger files, and the identity of those larger files. In addition, a file format can be used that can contain multiple language specific resources and can facilitate retrieval and access of individual language specific resources by the relevant language independent code.
Abstract:
An improved application architecture comprises a bifurcated structure having a language neutral portion and a localizable portion, compacted for efficiency into a smaller set of larger files. This bifurcated structure allows for easier distribution and updating of the application, while the reduced set of files provides for more efficient file management. A resource manifest can be specified during the compile stage to identify elements that are language specific and elements that remain language neutral. Furthermore, additional software can be used after compilation for compacting multiple localizable elements into a single file. Such compacting software can receive inputs specifying the language specific resources which are to be compacted into larger files, and the identity of those larger files. In addition, a file format can be used that can contain multiple language specific resources and can facilitate retrieval and access of individual language specific resources by the relevant language independent code.
Abstract:
An improved application architecture comprises a bifurcated structure having a language neutral portion and a localizable portion, compacted for efficiency into a smaller set of larger files. This bifurcated structure allows for easier distribution and updating of the application, while the reduced set of files provides for more efficient file management. A resource manifest can be specified during the compile stage to identify elements that are language specific and elements that remain language neutral. Furthermore, additional software can be used after compilation for compacting multiple localizable elements into a single file. Such compacting software can receive inputs specifying the language specific resources which are to be compacted into larger files, and the identity of those larger files. In addition, a file format can be used that can contain multiple language specific resources and can facilitate retrieval and access of individual language specific resources by the relevant language independent code.