-
公开(公告)号:US20120294919A1
公开(公告)日:2012-11-22
申请号:US13470881
申请日:2012-05-14
申请人: Bingham Scott Jaynes , Matthew Edward Gande , Ryan James Fenton , Urs Leo Stadler , Marc Mamak , Sungyeun Choi
发明人: Bingham Scott Jaynes , Matthew Edward Gande , Ryan James Fenton , Urs Leo Stadler , Marc Mamak , Sungyeun Choi
摘要: The invention is directed to an antimicrobial metal composite formed by vaporizing an antimicrobial metal or antimicrobial metal salt such as silver, copper or salts thereof using an plasma system and cooling the formed vapor in the presence of a fluidized gas of filler powder. Alternatively, the filler or a filler precursor is entrained with the antimicrobial metal or antimicrobial metal precursor and vaporized and then upon cooling the antimicrobial metal vapor and filler vapor condense to form the composite. The composite shows high antimicrobial activity and can be incorporated into or onto polymers, coatings, textiles, paper, gels (for example for wound care), lubricants, adhesives and cosmetics or pharmaceutical, especially medical devices.
摘要翻译: 本发明涉及通过使用等离子体系统蒸发抗微生物金属或抗微生物金属盐如银,铜或其盐形成的抗微生物金属复合物,并在填料粉末的流化气体存在下冷却形成的蒸气。 或者,将填料或填料前体与抗微生物金属或抗微生物金属前体夹带并蒸发,然后在冷却时将抗微生物金属蒸汽和填料蒸气冷凝形成复合物。 复合材料显示高抗微生物活性,并且可以并入聚合物,涂料,纺织品,纸,凝胶中(例如用于伤口护理),润滑剂,粘合剂和化妆品或药物,特别是医疗装置中。
-
公开(公告)号:US20100147188A1
公开(公告)日:2010-06-17
申请号:US12380365
申请日:2009-02-26
申请人: Marc Mamak , Urs Leo Stadler , Sungyeun Choi , Enzo Cordola
发明人: Marc Mamak , Urs Leo Stadler , Sungyeun Choi , Enzo Cordola
CPC分类号: C08K3/04 , B82Y30/00 , C01B32/225 , C01P2002/72 , C01P2002/82 , C01P2004/04 , C01P2004/20 , C01P2004/24 , C01P2004/54 , C01P2004/61 , C01P2004/62 , C01P2004/64 , C01P2006/10 , C01P2006/12 , C01P2006/22 , C01P2006/40 , C08L25/06 , C08L67/08 , C09C1/46 , Y10T428/2982 , C08L23/04 , C08L23/10 , C08L25/04
摘要: Disclosed are graphite nanoplatelets produced by a process which comprises thermal plasma expansion of intercalated graphite to produce expanded graphite followed by exfoliation of the expanded graphite, where the exfoliation step is selected from ultrasonication, wet milling and controlled caviation and where greater than 95% of the graphite nanoplatelets have a thickness of from about 0.34 nm to about 50 nm and a length and width of from about 500 nm to about 50 microns. The intercalated graphite is intercalated for example with a mixture of sulfuric and nitric acids. The plasma reactor for example employs an RF induction plasma torch. All three exfoliation methods are performed in an organic solvent or water. The exfoliation steps may be performed with the aid of for example a nonionic surfactant. Also disclosed are plastic, ink, coating, lubricant or grease compositions comprising the graphite nanoplatelets.
摘要翻译: 公开了通过包括插入石墨的热等离子体膨胀以产生膨胀石墨然后剥离膨胀石墨的方法制备的石墨纳米片,其中剥离步骤选自超声波,湿法研磨和可控制的空化,并且其中大于95% 石墨纳米片具有约0.34nm至约50nm的厚度和约500nm至约50微米的长度和宽度。 插入的石墨例如用硫酸和硝酸的混合物插入。 等离子体反应器例如采用RF感应等离子体焰炬。 所有三种剥离方法均在有机溶剂或水中进行。 剥离步骤可以借助于例如非离子表面活性剂进行。 还公开了包含石墨纳米片的塑料,油墨,涂料,润滑剂或润滑脂组合物。
-