Abstract:
An organic light emitting functional device with organic electron injection layer to improve the injection of electrons from the cathode in an organic light emitting diode. In particular, the device relates to the use of electron transport layer 4,7-di phenyl-1,10 phenanthroline (herein after called as BPhen) and another organic semiconductor Tetracyano quino dimethane (herein after called as TCNQ) and optimizing the thickness and doping percentage of the composition in an organic light emitting device. The main use of the composed injection layer is to balance the injection of holes from the anode side and the injection of electrons from cathode side and thus increase the efficiency of Organic light emitting diodes.
Abstract:
An organic light emitting functional device with organic electron injection layer to improve the injection of electrons from the cathode in an organic light emitting diode. In particular, the device relates to the use of electron transport layer 4,7-di phenyl-1,10 phenanthroline (herein after called as BPhen) and another organic semiconductor Tetracyano quino dimethane (herein after called as TCNQ) and optimizing the thickness and doping percentage of the composition in an organic light emitting device. The main use of the composed injection layer is to balance the injection of holes from the anode side and the injection of electrons from cathode side and thus increase the efficiency of Organic light emitting diodes.
Abstract:
An improved process for the preparation of a cellulose solution for spinning of fibres, filaments or films therefrom comprising the steps of: a) activating cellulose in a mixture containing said cellulose, tertiary amine oxide solvent and water for a period sufficient to allow a swelling of the cellulose by introduction therein of water present in said mixtures, the temperature of said activation step and concentration of solvent being such that the solvent is not converted into its monohydrate state during the step of activation; b) the cellulose mixture being subjected to the steps of dissolution of cellulose in the solvent by heating for removal of water so as to convert the solvent into at least its monohydrate form so as to cause a dissolution.
Abstract:
An improved process for the preparation of a cellulose solution for spinning of fibers, filaments or films therefrom comprising the steps of: a) activating cellulose in a mixture containing said cellulose, tertiary amine oxide solvent and, water for a period sufficient to allow a swelling of the cellulose by introduction therein of water present in said mixtures, the temperature of said activation step and concentration of solvent being such that the solvent is not converted into its monohydrate state during the step of activation; b) the cellulose, using a activator such as a glycol or a glyme, mixture being subjected to the steps of dissolution of cellulose in the solvent by heating for removal of water so as to convert the solvent into at least its monohydrate form so as to cause a dissolution.