摘要:
A driving device and a calibration method for an ablation write-once type optical disc in which the recording light volume can be calibrated accurately without using an over-power for positively recording data on the ablation write-once type optical disc. A playback output by an optical head 3 for recording/reproducing data by scanning an ablation write-once type optical disc 1 with a laser light beam is supplied to an optimum recording light volume decision unit 4. A light recording data controller 6 controls a laser driving controller 5 for controlling the laser light volume of an optical head 3 for recording two different recording patterns with different repetition periods with various recording light volumes. The optimum recording light volume decision unit 4 detects the asymmetry amount from the playback outputs of the two different recording patterns and determines an optimum recording light volume of the ablation write-once type optical disc 1 based on the asymmetry amounts at the various recording light volumes.
摘要:
With an arrangement having functions of detecting an unrecorded area by comparing a reproduction signal level obtained by conducting reproduction of a disk-shaped recording medium with a threshold, the setting of this threshold is performed by performing reproduction regarding an adjustment area serving as an unrecorded area on the disk-shaped recording medium while varying the adjusting threshold. Then, the threshold to be actually used for detection of unrecorded areas is set based on the comparison results between the adjusting threshold and the reproduction RF signal. Thus, a threshold appropriate for each device is automatically set for example, regardless of conditions such as differences in noise levels superimposed on reproduction signals, from one device to another. Thus, an appropriate threshold for blank checks can be set regardless of irregularities in parts from one device to another (i.e., regardless of differences in the noise levels superimposed on the reproduction RF signals from one device to another), thereby improving the reliability of blank checking.
摘要:
Test pattern data is recorded on a track of the optical disc, and the other pattern data is recorded on the neighboring track. A focus bias value providing the minimum jitter amount when the test pattern data is reproduced with varying the focus bias, is obtained. Just focusing condition is attained by the focus servo using the focus bias. When the test pattern data is reproduced, the data of these neighboring track is also reproduced simultaneously because the pattern data of the type different from the test pattern data is also recorded on the neighboring track. Particularly, under the defocusing condition, crosstalk amount becomes larger because the beam shape is distorted. With reference to jitter amount, such a mistake that the defocusing condition is erroneously determined as the just focusing condition can be eliminated. That is, the focus servo signal providing the accurate just focusing condition can be obtained.
摘要:
In a disc drive device upon recording, the writing of data is executed and thereafter the reading of data is executed to verify, i.e., make a check as to whether the written data can be properly read out. In this case, the gain of a gain control amplifier for amplifying a reproduced signal is set so as to be lower than usual and a window width of a window comparator is set so as to be greater than usual. An error rate in a bubble shaped region in which the amplitude of the reproduced signal is small, is rendered high. Thus, verify can be taken as NG when recording power falls within the bubble region. Verify is determined based on RESYNC bytes added every predetermined data intervals, i.e., detected information about patterns for data having the minimum and maximum inversion intervals as well as on error information. As a result, verify can be reliably taken as NG even when the recording power is placed in a region between the bubble shaped region and a normal region. Thus, the accuracy of verify can be enhanced.
摘要:
In an optical recording apparatus which records data by stabilizing the duration of laser beam emission, a controller produces a clock signal which is synchronous to source data to be recorded, and modulates the data into modulated data. A phase comparator, oscillator and frequency demultiplier produce a signal which is synchronous to the modulated data, has a constant duty-cycle and has a period that is 1/Kb time (Kb is an integer greater than or equal to 2) the data period of the shortest modulated data. Based on the data and signal, laser emission pattern signals are produced. Signal generators produce reference signals in response to control signals from a microcomputer. Switches are controlled by the pattern signals to conduct reference signals selectively. A laser diode is driven by a signal which is the sum of the selected reference signals, and the laser power is controlled accordingly. The constant duty-cycle of the signal prevents the fluctuation of the duration of laser beam emission.