Abstract:
A shock absorber in which a flow of hydraulic oil caused by sliding movement of a piston in a cylinder is controlled by a pilot type main valve and a pilot valve to generate damping force. The valve-opening operation of the main valve is controlled by adjusting the pressure in a pilot chamber with the pilot valve. A valve block and a solenoid block are connected together into one unit and inserted into a casing before being secured with a nut. At this time, an actuating rod of the solenoid block is engaged with a pilot valve member retained by a pilot spring and a fail-safe spring in a cylindrical portion of a pilot body of the valve block.
Abstract:
A shock absorber comprising: a cylinder; a piston partitioning the cylinder into two chambers; a piston rod; a by-pass passage passing through the chambers; and a damping-force adjusting mechanism adjusting a passage area of the by-pass passage, wherein the adjusting mechanism includes: a shutter guide; a shutter movably guided by the shutter guide; and an elastic member elastically retaining the shutter at an initial position, an adjustable passage adjusting the passage area of the by-pass passage as that opening is varied by shift of the shutter is formed, shift of the shutter is not influenced by pressure difference between the chambers, and when the shutter is at the initial position, the adjustable passage is opened with a predetermined degree, and the shutter moves to close the adjustable passage by fluid force that generates by flow of the working fluid of the adjustable passage against elastic force of the elastic member.
Abstract:
A piston connected to a piston rod is slidably fitted in a cylinder having a hydraulic fluid sealed therein. First and second poppet valves having different valve opening characteristics are provided in first and second extension main passages, respectively. A pilot control valve is provided in a sub-passage. The control pressure of the pilot control valve is adjusted by a proportional solenoid, thereby controlling damping force. At the same time, the pressure at the upstream side of the pilot control valve is introduced into back-pressure chambers to adjust the valve opening pressures of the first and second poppet valves. Because the first and second poppet valves are sequentially opened or closed, damping force can be controlled stepwisely, and ideal damping force characteristics can be obtained.
Abstract:
The present invention provides a hydraulic shock absorber in which a damping force can be changed nearly linearly as a valve body driven by a proportional solenoid is displaced, by utilizing ports and a oil groove which can easily be formed by a conventional machine tool such as a drilling machine or a lathe. Oil passages and an annular groove connected to the oil passages are formed in a surface of a cylindrical guide portion along which a plunger can slide, and, circular oil passages and an annular groove connected to and offset from the oil passages are formed in a surface of a plunger. The oil passages and annular groove in the plunger can easily be formed by a conventional machine tool such as a drilling machine or a lathe. When an oil path is opened, the oil passages are firstly opened and then the associated annular groove is opened. Thus, a damping force can be changed nearly linearly, and response to the switching of the damping force can be improved.
Abstract:
The present invention is directed to a damping force adjustable hydraulic shock absorber including a cylinder filled with a hydraulic fluid, a piston slidably mounted within the cylinder to divide the interior of the cylinder into two chambers, and a piston rod having one end connected to the piston and the other end extending out of the cylinder. A damping force generating mechanism is provided to communicate between the two chambers and to generate a damping force. A communication passage for communicating one of two chambers in the cylinder with the other chamber and a valve are provided in the communication passage and are adapted to generate the damping force by opening in response to one way flow of the liquid. The shock absorber has a valve opening pressure adjusting mechanism having a back pressure chamber communicating with an upstream portion of the communication passage with respect to the valve. The adjusting mechanism is adapted to change a valve opening pressure of the valve in accordance with a pressure in the back pressure chamber. Also, a relief valve is provided which permits communication between the back pressure chamber and a downstream portion of the communication passage. The relief valve is capable of adjusting the pressure in the back pressure chamber.
Abstract:
A cylinder (7) having a hydraulic fluid sealed therein is fitted with a piston (8) having a piston rod (9) connected thereto. The piston rod (9) is provided with a bypass passage (B) (generating relatively small damping force). The passage area of the bypass passage (B) is controlled by varying the area of orifices formed by guide ports (21 and 22) and shutter ports (24 and 25) by rotating a shutter (23), thereby changing damping force characteristics. Auxiliary ports (34 and 35) are provided to open into the guide ports (21 and 22), respectively. The hydraulic fluid jetted out into the shutter (23) from the orifices formed by the guide ports (21 and 22) and the shutter ports (24 and 25) is directed to flow approximately perpendicularly to the direction of sliding of the shutter (23) by the hydraulic fluid jetted out from the auxiliary ports (34 and 35), thereby reducing the hydrodynamic force acting in the sliding direction of the shutter (23), and thus minimizing the force required to actuate and hold the shutter (23).
Abstract:
Method and device for coupling a self-propelled truck with a carrying truck, wherein the self-propelled truck is provided with a female engagement member having right and left catching spacings, whereas the carrying truck is provided with a male engagement pin, and wherein, while the self-propelled truck is moving along a rectilinear or curved path, the male engagement pin is caught and engaged in one of the right and left catching spacings, thereby effecting automatic, unmanned coupling of those two trucks. Also, an uncoupling arrangement is provided by disposing an uncoupling stand member at a proper uncoupling point and an uncoupling arm member at the self-propelled truck.
Abstract:
During either of the extension and compression strokes, hydraulic liquid flows from a cylinder upper chamber into a reservoir through an annular passage and a damping force control mechanism, and a damping force is generated by the damping force control mechanism. The check valve is provided with a sub-check valve in parallel thereto, which opens in a very low piston speed region to allow the hydraulic liquid to flow through an orifice passage. These check valves are opened successively as the piston speed increases, thereby generating a sufficiently small damping force in the very low piston speed region during the compression stroke of the piston rod, and obtaining a moderate damping force when the piston speed increases.
Abstract:
A damping force adjustable hydraulic shock absorber, in which response delay of a pressure control valve and self-excited vibration of a valve body can be prevented. A damping force is generated by controlling an oil flow between an annular oil passage (21) and a reservoir (4) generated by sliding movement of a piston in a cylinder with use of a back-pressure type main valve (27) and a pressure control valve (28). The damping force is directly generated by the pressure control valve, and valve-opening pressure of the main valve is adjusted by adjusting an inner pressure of a back-pressure chamber. In the pressure control valve, a valve spring is disposed between a valve body and a plunger. A mass of the valve body is sufficiently less than that of the plunger, and a spring stiffness of the valve spring is higher than that of a plunger spring.
Abstract:
A fluid pressure shock absorber in which valve opening of the main valve is controlled by an inner pressure of a backpressure chamber. A first piston (3) and a second piston (4) coupled to a piston rod (10) are fitted in a cylinder (2) such that a piston chamber (2C) is defined between the first and second pistons. An extension-side main valve (18) and a compression-side main valve (23) are provided in the piston chamber (2C). Valve opening of the main valves is controlled by an extension-side backpressure chamber (19) and a compression-side backpressure chamber (24). A compression-side check valve (13) and an extension-side check valve (16) are provided at the first piston (3) and the second piston (4). During an extension stroke of the piston rod (10), the compression-side check valve (13) is closed, whereby action of a pressure of a cylinder upper chamber (2A) on the compression-side main valve (23) is prevented. During a compression stroke of the piston rod (10), the extension-side check valve (16) is closed, whereby action of a pressure of a cylinder lower chamber (2B) on the extension-side main valve (18) is prevented. Accordingly, it is possible to generate a stable damping force, and enhance durability of the extension-side main valve (18) and the compression-side main valve (23).